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1 Material Models for Structural Analysis

1.1 Linear Elastic Materials

1.1.1 Isotropic Linear Elastic Material

Linear isotropic material model. The model parameters are summarized in
table 1.

Description Linear isotropic elastic material
Record Format IsoLE num(in) # d(rn) # E(rn) # n(rn) # tAlpha(rn) #
Parameters - num material model number

- d material density
- E Young modulus
- n Poisson ratio
- tAlpha thermal dilatation coefficient

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat, 2dPlateLayer,
2dBeamLayer, 3dShellLayer, 2dPlate, 2dBeam, 3dShell,
3dBeam, PlaneStressRot

Features Adaptivity support

Table 1: Linear Isotropic Material - summary.

1.1.2 Orthotropic Linear Elastic Material

Linear orthotropic, linear elastic material model. The model parameters are
summarized in table 2. Local coordinate system, which determines axes of
material orthotrophy can by specified using lcs array. This array contains six
numbers, where first three numbers represent directional vector of local x-axis,
and next three numbers represent directional vector of local y-axis. The local
z-axis is determined using vector product. The right-hand coordinate system
is assumed. Local coordinate system can also be specified using scs parameter.
Then local coordinate system is specified in so called “shell” coordinate system,
which is defined locally on each particular element and its definition is as follows:
principal z-axis is perpendicular to shell mid-section, x-axis is perpendicular to
z-axis and normal to user specified vector (so x-axis is parallel to plane, with
being normal to this plane) and y-axis is perpendicular both to x and z axes.
This definition of coordinate system can be used only with plates and shells
elements. When vector is parallel to z-axis an error occurs. The scs array
contain three numbers defining direction vector . If no local coordinate system
is specified, by default a global coordinate system is used.

For 3D case the material compliance matrix has the following form

C =


1/EX −νxy/Ex −νxz/Ex 0 0 0
−νyx/Ey 1/Ey −νyz/Ey 0 0 0
−νzx/Ez −νzy/Ez 1/Ez 0 0 0

0 0 0 1/Gyz 0 0
0 0 0 0 1/Gxz 0
0 0 0 0 0 1/Gxy

 (1)
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By inversion, the material stiffness matrix has the form

D =


dxx dxy dxz 0 0 0

dyy dyz 0 0 0
sym dzz 0 0 0

0 0 0 Gyz 0 0
0 0 0 0 Gxz 0
0 0 0 0 0 Gxy

 (2)

where ξ = 1− (νxy ∗νyx+νyz ∗νzy +νzx ∗νxz)− (νxy ∗νyz ∗νzx+νyx ∗νzy ∗νxz)
and

dxx = EX(1− νyz ∗ νzy)/ξ, (3)
dxy = Ey ∗ (νxy + νxz ∗ νzy)/ξ, (4)
dxz = Ez ∗ (νxz + νyz ∗ νxy)/ξ, (5)
dyy = Ey ∗ (1− νxz ∗ νzx)/ξ, (6)
dyz = Ez ∗ (νyz + νyx ∗ νxz)/ξ, (7)
dzz = Ez ∗ (1− νyx ∗ νxy)/ξ. (8)

Ei is the Young’s modulus in the i-th direction, Gij is the shear modulus in
ij plane, νij major Poisson’s ratio, and νji minor Poisson’s ratio. Assuming
that Ex > Ey > Ez, νxy > νyx etc., then the νxy is refered to as major
Poisson’s ratio, while νyx refered as minor Poisson’s ratio. Note, that there
is only nine independent material parameters, because of symmetry conditions.
The symmetry condition yields

νxyEy = νyxEx, νyzEz = νzyEy, νzxEx = νxzEz

The model description and parameters are summarized in table 2.

1.2 Plasticity Based Material Models

1.2.1 Drucker-Prager model

The Drucker-Prager plasticity model1 is an isotropic elasto-plastic model based
on a yield function

f (σ, τY) = F (σ)− τY (9)

with the pressure-dependent equivalent stress

F (σ) = αI1 +
√
J2 (10)

As usual, σ is the stress tensor, τY is the yield stress under pure shear, and I1
and J2 are the first invariant and second deviatoric invariant of the stress tensor.
The friction coefficient α is a positive parameter that controls the influence of
the pressure on the yield limit, important for cohesive-frictional materials such
as concrete, soils or other geomaterials. The flow rule is derived from the plastic
potential

g (σ) = αψI1 +
√
J2 (11)

1Contributed by Simon Rolshoven, LSC, FENAC, EPFL.
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Description Orthotropic, linear elastic material
Record Format OrthoLE num(in) # d(rn) # Ex(rn) # Ey(rn) # Ez(rn) #

NYyz(rn) # NYxz(rn) # NYxy(rn) # Gyz(rn) # Gxz(rn) #
Gxy(rn) # tAlphax(rn) # tAlphay(rn) # tAlphaz(rn) #
[ lcs(ra) #] [ scs(ra) #]

Parameters - num material model number
- d material density
- Ex, Ey, Ez Young moduluses for x,y, and z directions
- NYyz, NYxz, NYxy major Poisson’s ratio coefficients
- Gyz, Gxz, Gxy Shear moduluses
- tAlphax, tAlphay, tAlphaz thermal dilatation coefficients
in x,y,z directions
- lcs Array defining local material x and y axes of orthotro-
phy
- scs Array defining a normal vector n. The local x axis is
parallel to plane with n being plane normal. The material
local z-axis is perpendicular to shell mid-section.

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat, 2dPlateLayer,
2dBeamLayer, 3dShellLayer, 2dPlate, 2dBeam, 3dShell,
3dBeam, PlaneStressRot

Table 2: Orthotropic, linear elastic material - summary.

where αψ is the dilatancy coefficient. An associated model with α = αψ would
overestimate the dilatancy of concrete, so the dilatancy coefficient is usually
chosen smaller than the friction coefficient. The model is described by the
equations

σ = D : (ε− εp) (12)
τY = h(κ) (13)

ε̇p = λ̇
∂g

∂σ
= λ̇

(
αψδ +

s

2
√
J2

)
(14)

κ̇ =

√
2
3
‖ε̇p‖ (15)

λ̇ ≥ 0, f (σ, τY) ≤ 0, λ̇ f (σ, τY) = 0 (16)

which represent the linear elastic law, hardening law, evolution laws for plastic
strain and hardening variable, and the loading-unloading conditions. In the
above, D is the elastic stiffness tensor, ε is the strain tensor, εp is the plastic
strain tensor, λ is the plastic multiplier, δ is the unit second-order tensor, s
is the deviatoric stress tensor, κ is the hardening variable, and a superior dot
marks the derivative with respect to time. The flow rule has the form given
in Eq. (14) at all points of the conical yield surface with the exception of its
vertex, located on the hydrostatic axis.

For the present model, the evolution of the hardening variable can be explic-
itly linked to the plastic multiplier. Substituting the flow rule (14) into Eq. (15)
and computing the norm leads to

κ̇ = kλ̇ (17)
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with a constant parameter k =
√

1/3 + 2α2
ψ, so the hardening variable is pro-

portional to the plastic multiplier. For α = αψ = 0, the associated J2-plasticity
model is recovered as a special case.

In the simplest case of linear hardening, the hardening function is a linear
function of κ, given by

h(κ) = τ0 +HEκ (18)

where τ0 is the initial yield stress, and H is the hardening modulus normalized
with the elastic modulus. Alternatively, an exponential hardening function

h(κ) = τlimit + (τ0 − τlimit) e−κ/κc (19)

can be used for a more realistic description of hardening.
The stress-return algorithm is based on the Newton-iteration. In plasticity,

this is commonly called Closest-Point-Projection (CPP), and it generally leads
to quadratic convergence. The implemented algorithm is convergent in any
stress case, but in the vicinity of the vertex region, quadratic convergence might
be lost because of insufficient regularity of the yield function.

The algorithmic tangent stiffness matrix is implemented for both the reg-
ular case and the vertex region. Generally, the error decreases quadratically
(of course only asymptotically). Again, in the vicinity of the vertex region,
quadratic convergence might be lost due to insufficient regularity. Furthermore,
the tangent stiffness matrix does not always exist for the vertex case. In these
cases, the elastic stiffness is used instead. It is generally safer (but slower) to
use the elastic stiffness if you encounter any convergence problems, especially if
your problem is tension-dominated.

Description DP material
Record Format druckerprager num(in) # d(rn) # tAlpha(rn) # E(rn) #

n(rn) # alpha(rn) # alphaPsi(rn) # ht(in) # iys(rn) # lys(rn) #
hm(rn) # kc(rn) # [ yieldtol(rn) #]

Parameters - num material model number
- d material density
- tAlpha thermal dilatation coefficient
- E Young modulus
- n Poisson ratio
- alpha friction coefficient
- alphaPsi dilatancy coefficient
- ht hardening type, 1: linear hardening, 2: exponential
hardening
- iys initial yield stress in shear, τ0
- lys limit yield stress for exponential hardening, τlimit

- hm hardening modulus normalized with E-modulus (!)
- kc κc for the exponential softening law
- yieldtol tolerance of the error in the yield criterion, default
value 1.e-14

Table 3: DP material - summary.
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1.2.2 Composite plasticity model for masonry

Masonry is a composite material made of bricks and mortar. Nonlinear behavior
of both components should be considered to obtain a realistic model able to de-
scribe cracking, slip, and crushing of the material. The model is based on paper
by Lourenco and Rots [6]. It is formulated on the basis of softening plasticity
for tension, shear, and compression (see fig.(1)). Numerical implementation is
based on modern algorithmic concepts such as implicit integration of the rate
equations and consistent tangent stiffness matrices.

Friction
    mode

mode

Tension
mode

Cap

Residual surfaceInitial surface

Intermediate
surface

τ

σ

Figure 1: Composite yield surface model for masonry

The approach used in this work is based on idea of concentrating all the dam-
age in the relatively weak joints and, if necessary, in potential tension cracks
in the bricks. The joint interface constitutive model should include all impor-
tant damage mechanisms. Here, the concept of interface elements is used. An
interface element allows to incorporate discontinuities in the displacement field
and its behavior is described in terms of a relation between the tractions and
relative displacement across the interface. In the present work, these quanti-
ties will be denoted as σ, generalized stress, and ε, generalized strain. For 2D
configuration, σ = {σ, τ}T and ε = {un, us}T , where σ and τ are the normal
and shear components of the traction interface vector and n and s subscripts
distinguish between normal and shear components of displacement vector. The

h
h
h

h +h

m

m

m b

b

Interface elements (joints)

Continuum elements (brick)

Figure 2: Modeling strategy for masonry
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elastic response is characterized in terms of elastic constitutive matrix D as

σ = Dε (20)

For a 2D configuration D = diag{kn, ks}. The terms of the elastic stiffness
matrix can be obtained from the properties of both masonry and joints as

kn =
EbEm

tm(Eb − Em)
; ks =

GbGm
tm(Gb −Gm)

(21)

where Eb and Em are Young’s moduli, Gb and Gm shear moduli for brick and
mortar, and tm is the thickness of joint. One should note, that there is no contact
algorithm assumed between bricks, this means that the overlap of neighboring
units will be visible. On the other hand, the interface model includes a com-
pressive cap, where the compressive inelastic behavior of masonry is lumped.

Tension mode In the tension mode, the exponential softening law is assumed
(see fig.(3)). The yield function has the following form

f1(σ, κ1) = σ − ft(κ1) (22)

where the yield value ft is defined as

ft = ft0 exp

(
− ft0
GIf

κ1

)
(23)

The ft0 represents tensile strength of joint or interface; and GIf is mode-I frac-

0 0.2 0.4
0

0.05

0.1

0.15

0.2

Figure 3: Tensile behavior of proposed model (ft = 0.2 MPa, GI
f =

0.018 N/mm)

ture energy. For the tension mode, the associated flow hypothesis is assumed.

Shear mode For the shear mode a Coulomb friction envelope is used. The
yield function has the form

f2(σ, κ2) = |τ |+ σ tanφ(κ2)− c(κ2) (24)
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According to [6] the variations of friction angle φ and cohesion c are assumed
as

c = c0 exp

(
− c0
GIIf

κ2

)
(25)

tanφ = tanφ0 + (tanφr − tanφ0)
(
c0 − c
c0

)
(26)

where c0 is initial cohesion of joint, φ0 initial friction angle, φr residual friction
angle, and GIIf fracture energy in mode II failure. A non-associated plastic
potential g2 is considered as

g2 = |τ |+ σ tan Φ− c (27)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

σ=−1.0
σ=−0.5
σ=−0.1

Figure 4: Shear behavior of proposed model for different confinement levels in
MPa (c0 = 0.8 MPa, tanφ0 = 1.0, tanφr = 0.75, and GII

f = 0.05 N/mm)

Coupling of tension/shear modes The tension and Coulomb friction modes
are coupled with isotropic softening. This means that the percentage of soften-
ing in the cohesion is assumed to be the same as on the tensile strength

κ̇1 = λ1 +
GIf
GIIf

c0
ft0

λ2; κ̇2 =
GIIf
GIf

ft0
c0
λ1 + λ2 (28)

This follows from (23) and (25). However, in the corner region, when both yield
surfaces are activated, such approach will lead to a non-acceptable penalty. For
this reason a quadratic combination is assumed

κ̇1 =

√√√√(λ1)2 +

(
GIf
GIIf

c0
ft0

λ2

)2

; κ̇2 =

√√√√(GIIf
GIf

ft0
c0
λ1

)2

+ (λ2)2 (29)
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Cap mode For the cap mode, an ellipsoid interface model is used. The yield
condition is assumed as

f3(σ, κ3) = Cnnσ
2 + Cssτ

2 + Cnσ − σ̄2(κ3) (30)

where Cnn, Css, and Cn are material model parameters and σ̄ is yield value,
originally assumed in the following form of hardening/softening law [6]

σ̄1(κ3) = σ̄i + (σ̄p − σ̄i)

√
2κ3

κp
− κ2

3

κ2
p

; κ3 ∈ (0, κp)

σ̄2(κ3) = σ̄p + (σ̄m − σ̄p)
(
κ3 − κp
κm − κp

)2

; κ3 ∈ (κp, κm) (31)

σ̄3(κ3) = σ̄r + (σ̄m − σ̄r) exp
(
m
κ3 − κm
σ̄m − σ̄r

)
; κ3 ∈ (κm,∞)

with m = 2(σ̄m− σ̄p)/(κm−κp). The hardening/softening law (31) is shown in
fig.(5). Note that the curved diagram is a C1 continuous σ − κ3 relation. The
energy under the load-displacement diagram can be related to a “compressive
fracture energy”. The original hardening law (31.1) exhibits indefinite slope for
κ3 = 0, which can cause the problems with numerical implementation. This has
been overcomed by replacing this hardening law with parabolic equation given
by

σ̄1(κ3) = σ̄i − 2 ∗ (σ̄i − σ̄p) ∗
κ3

κp
+ (σ̄i − σ̄p)

κ3

κp
(32)

An associated flow and strain hardening hypothesis are being considered. This
yields

κ̇3 = λ3

√
(2Cnnσ + Cn) ∗ (2Cnnσ + Cn) + (2Cssτ) ∗ (2Cssτ) (33)

m

σ

σ

σ

σ

κ κ κ
mp

p

σ

σ

σ

1

2

3
σ

i

r

Figure 5: Hardening/softening law for cap mode

The model parameters are summarized in table 4. There is one algorithmic
issue, that follows from the model formulation. Since the cap mode harden-
ing/softening is not coupled to hardening/softening of shear and tension modes
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the it may happen that when the cap and shear modes are activated, the re-
turn directions become parallel for both surfaces. This should be avoided by
adjusting the input parameters accordingly (one can modify dilatancy angle, for
example).

Description Composite plasticity model for masonry
Record Format Masonry02 num(in) # d(rn) # E(rn) # n(rn) # ft0(rn) #

gfi(rn) # gfii(rn) # kn(rn) # ks(rn) # c0(rn) # tanfi0(rn) # tan-
fir(rn) # tanpsi(rn) # si(rn) # sp(rn) # sm(rn) # sr(rn) # kp(rn) #
km(rn) # kr(rn) # cnn(rn) # css(rn) # cn(rn) #

Parameters - num material model number
- d material density
- E Young modulus
- n Poisson ratio
- ft0 tensile strength
- gfi fracture energy for mode I
- gfii fracture energy for mode II
- kn joint elastic property
- ks joint elastic property
- c0 initial cohesion
- tanfi0 initial friction angle
- tanfir residual friction angle
- tanpsi dilatancy
- {si, sp, sm, sr} cap parameters {σ̄i, σ̄p, σ̄m, σ̄r}
- {kp, km,kr} cap parameters {κp, κm, κr}
- cnn,css,cn cap mode parametrs

Supported modes 2dInterface

Table 4: Composite model for masonry - summary.

1.2.3 HMH perfectly plastic material

Implements a perfectly plastic material. HMH plasticity condition with no
hardening is used. Before plastic condition apply, and during unloading and
reloading an isotropic linear elastic behavior is assumed. Linear elastic behavior
is described using Young modulus and Poisson ratio. Plasticity condition is
described using uniaxial strength. The model description and parameters are
summarized in table 5.

1.2.4 Nonlinear elasto-plastic material model for concrete plates and
shells

Nonlinear elasto-plastic material model with hardening. Takes into account
uniaxial stress + transverse shear in concrete layers with transverse stirrups.
Can be used only for 2d plates and shells with layered cross section and together
with explicit integration method (stiffness matrix is not provided). The model
description and parameters are summarized in table 6.
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Description HMH perfectly plastic material
Record Format Steel1 num(in) # d(rn) # E(rn) # n(rn) # tAlpha(rn) #

Ry(rn) #
Parameters - num material model number

- d material density
- E Young modulus
- n Poisson ratio
- tAlpha thermal dilatation coefficient
- Ry uniaxial strength defining the yield limit

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat, 2dPlateLayer,
2dBeamLayer, 3dShellLayer 3dBeam, PlaneStressRot

Table 5: HMH perfectly plastic material - summary.

1.2.5 J2 plasticity material model with hardening

1.3 Material models for tensile failure

1.3.1 Nonlinear elasto-plastic material model for concrete plates and
shells

The description can be found is section 1.2.4.

1.3.2 Smeared rotating crack model

Implementation of smeared rotating crack model. Virgin material is modeled as
isotropic linear elastic material (described by Young modulus and Poisson ratio).
The onset of cracking begins, when principal stress reaches tensile strength.
Further behavior is then determined by softening law, governed by principle of
preserving of fracture energy Gf . For large elements, the tension strength can
be artificially reduced to preserve fracture energy. Multiple cracks are allowed.
The elastic unloading and reloading is assumed. In compression regime, this
model correspond to isotropic linear elastic material. The model description
and parameters are summarized in table 7.

1.3.3 Smeared rotating crack model with transition to scalar damage
- linear softening

Implementation of smeared rotating crack model with transition to scalar dam-
age with linear softening law. Improves the classical rotating model (see sec-
tion 1.3.2) by introducing the transition to scalar damage model in later stages
of tension softening.

Traditional smeared-crack models for concrete fracture are known to suffer
by stress locking (meaning here spurious stress transfer across widely opening
cracks), mesh-induced directional bias, and possible instability at late stages
of the loading process. The combined model keeps the anisotropic character
of the rotating crack but it does not transfer spurious stresses across widely
open cracks. The new model with transition to scalar damage (RC-SD) keeps
the anisotropic character of the RCM but it does not transfer spurious stresses
across widely open cracks.
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Description Nonlinear elasto-plastic material model for concrete plates
and shells

Record Format Concrete2 num(in) # d(rn) # E(rn) # n(rn) # SCCC(rn) #
SCCT(rn) # EPP(rn) # EPU(rn) # EOPU(rn) #
EOPP(rn) # SHEARTOL(rn) # IS PLASTIC FLOW(in) #
IFAD(in) # STIRR E(rn) # STIRR Ft(rn) #
STIRR A(rn) # STIRR TOL(rn) # STIRR EREF(rn) #
STIRR LAMBDA(rn) #

Parameters - num material model number
- d material density
- E Young modulus
- n Poisson ratio
- SCCC pressure strength
- SCCT tension strength
- EPP threshold effective plastic strain for softening in com-
pression
- EPU ultimate eff. plastic strain
- EOPP threshold volumetric plastic strain for softening in
tension
- EOPU ultimate volumetric plastic strain
- SHEARTOL threshold value of the relative shear defor-
mation (psi**2/eef) at which shear is considered in lay-
ers. For lower relative shear deformations the transverse
shear remains elastic decoupled from bending. default value
SHEARTOL = 0.01
- IS PLASTIC FLOW indicates that plastic flow (not de-
formation theory) is used in pressure
- IFAD State variables will not be updated, otherwise up-
date state variables
- STIRR E Young modulus of stirrups
- STIRR R stirrups uniaxial strength = elastic limit
- STIRR A stirrups area/unit length (beam) or /unit area
(shell)
- STIRR TOL stirrups tolerance of equilibrium in the z
direction (=0 no iteration)
- STIRR EREF stirrups reference strain rate for Peryzna’s
material
- STIRR LAMBDA coefficient for that material (stirrups)
- SHTIRR H isotropic hardening factor for stirrups

Supported modes 3dShellLayer, 2dPlateLayer

Table 6: Nonlinear elasto-plastic material model for concrete - summary.

Virgin material is modeled as isotropic linear elastic material (described
by Young modulus and Poisson ratio). The onset of cracking begins, when
principal stress reaches tensile strength. Further behavior is then determined
by linear softening law, governed by principle of preserving of fracture energy
Gf . For large elements, the tension strength can be artificially reduced to
preserve fracture energy. The transition to scalar damage model takes place,
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Description Rotating crack model for concrete
Record Format Concrete3 d(rn) # E(rn) # n(rn) # Gf(rn) # Ft(rn) #

exp soft(in) # tAlpha(rn) #
Parameters - num material model number

- d material density
- E Young modulus
- n Poisson ratio
- Gf fracture energy
- Ft tension strength
- exp soft determines the type of softening, if nonzero ex-
ponential softening is used, linear otherwise
- tAlpha thermal dilatation coefficient

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat, 2dPlateLayer,
2dBeamLayer, 3dShellLayer

Table 7: Rotating crack model for concrete - summary.

when the softening stress reaches the specified limit. Multiple cracks are allowed.
The elastic unloading and reloading is assumed. In compression regime, this
model correspond to isotropic linear elastic material. The model description
and parameters are summarized in table 8.

Description RC-SD model for concrete
Record Format RCSD d(rn) # E(rn) # n(rn) # Gf(rn) # Ft(rn) # sdtransi-

tioncoeff(rn) # tAlpha(rn) #
Parameters - num material model number

- d material density
- E Young modulus
- n Poisson ratio
- Gf fracture energy
- Ft tension strength
- sdtransitioncoeff determines the transition from RC to SD
model. Transition takes plase when ratio of current soften-
ing stress to tension strength is less than sdtransitioncoeff
value
- tAlpha thermal dilatation coefficient

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat, 2dPlateLayer,
2dBeamLayer, 3dShellLayer

Table 8: RC-SD model for concrete - summary.

1.3.4 Smeared rotating crack model with transition to scalar damage
- exponential softening

Implementation of smeared rotating crack model with transition to scalar dam-
age with exponential softening law. The description and model summary (ta-
ble 9) are the same as for the RC-SD model with linear softening law (see
section 1.3.3).
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Description RC-SD model for concrete with exponential softening law
Record Format RCSDE d(rn) # E(rn) # n(rn) # Gf(rn) # Ft(rn) # sdtransi-

tioncoeff(rn) # tAlpha(rn) #

Table 9: RC-SD model for concrete - summary.

1.3.5 Nonlocal Smeared rotating crack model with transition to scalar
damage

Implementation of nonlocal version of smeared rotating crack model with tran-
sition to scalar damage. Improves the classical rotating model (see section 1.3.2)
by introducing the transition to scalar damage model in later stages of tension
softening. The improved RC-SD (see section 1.3.3) is further extended to a
nonlocal formulation, which not only acts as a powerful localization limiter but
also alleviates mesh-induced directional bias. A special type of material insta-
bility arising due to negative shear stiffness terms in the rotating crack model is
resolved by switching to SD mode. A bell shaped nonlocal averaging function
is used.

Virgin material is modeled as isotropic linear elastic material (described
by Young modulus and Poisson ratio). The onset of cracking begins, when
principal stress reaches tensile strength. Further behavior is then determined
by exponential softening law.

The transition to scalar damage model takes place, when the softening stress
reaches the specified limit or when the loss of material stability due to negative
shear stiffness terms that may arise in the standard RCM formulation, which
takes place when the ratio of minimal shear coefficient in stiffness to bulk ma-
terial shear modulus reaches the limit.

Multiple cracks are allowed. The elastic unloading and reloading is assumed.
In compression regime, this model correspond to isotropic linear elastic material.
The model description and parameters are summarized in table 10.

1.3.6 Isotropic damage model in tension

This isotropic damage model assumes that the stiffness degradation is isotropic,
i.e., stiffness moduli corresponding to different directions decrease proportion-
ally and independently of direction of loading. The damaged stiffness tensor is
expressed as D = (1−ω)De. Damage evolution law is postulated in an explicit
form, relating damage parameter and scalar measure of largest reached equiva-
lent strain level in material e, taking into account the principle of preserving of
fracture energy Gf . The equivalent strain, i.e., a scalar measure of the strain
level is defined as norm from positive principal strains. The model description
and parameters are summarized in table 11. The material uses crack-band ap-
proach to dissipate the correct annount of fracture energy by adjusting locally
material parameters. There is a limit on element size, which can be expressed
as

e0 ≤ ef/le
where le is element length in the direction normal to crack plane, e0 is max effec-
tive strain at peak load, and ef is crack opening (not strain) when tension stress
vanishes. This condition prevents a local snap-back of stress-strain diagram,
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Description RC-SD-NL model for concrete
Record Format RCSDNL d(rn) # E(rn) # n(rn) # Ft(rn) # sdtransitionco-

eff(rn) # sdtransitioncoeff2(rn) # r(rn) # tAlpha(rn) #
Parameters - num material model number

- d material density
- E Young modulus
- n Poisson ratio
- ef deformation corresponding to fully open crack
- Ft tension strength
- sdtransitioncoeff determines the transition from RC to SD
model. Transition takes place when ratio of current soften-
ing stress to tension strength is less than sdtransitioncoeff
value
- sdtransitioncoeff2 determines the transition from RC to
SD model. Transition takes place when ratio of current
minimal shear stiffness term to virgin shear modulus is less
than sdtransitioncoeff2 value
- r parameter specifying the width of nonlocal averaging
zone
- tAlpha thermal dilatation coefficient
- regionMap map indicating the regions (currently region is
characterized by cross section number) to skip for nonlo-
cal avaraging. The elements and corresponding IP are not
taken into account in nonlocal averaging process if corre-
sponding regionMap value is nonzero.

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat, 2dPlateLayer,
2dBeamLayer, 3dShellLayer

Table 10: RC-SD-NL model for concrete - summary.

which will otherwise occur to preserve correct amount of dissipated energy for
large elements.

1.3.7 Nonlocal isotropic damage model in tension

Nonlocal version of isotropic damage model in tension. The nonlocal averag-
ing acts as a powerful localization limiter. The bell-shaped nonlocal averaging
function is used. The model description and parameters are summarized in
table 12.

1.3.8 MDM - Anisotropic damage model

Local formulation The concept of isotropic damage is appropriate for ma-
terials weakened by voids, but if the physical source of damage is the initiation
and propagation of microcracks, isotropic stiffness degradation can be consid-
ered only as a first rough approximation. More refined damage models take
into account the highly oriented nature of cracking, which is reflected by the
anisotropic character of the damaged stiffness or compliance matrices.

A number of anisotropic damage formulations have been proposed in the lit-
erature. Here we use a model outlined by M. Jirásek in [2], which is based on the
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Description Isotropic damage model for concrete in tension
Record Format idm1 d(rn) # E(rn) # n(rn) # e0(rn) # ef(rn) # tAlpha(rn) #

equivstraintype(in) #
Parameters - num material model number

- d material density
- E Young modulus
- n Poisson ratio
- ef crack opening (not strain) when tension stress vanishes
- e0 max effective strain at peak
- tAlpha thermal dilatation coefficient
- equivstraintype Allows to choose from different definitions
of equivalent strain, which is a scalar measure of the strain
level. The supported values are:

0- Mazar’s definition of equivalent strain (default one)

ε̃ =

√√√√ 3∑
I=1

< εI >
2, where < εI > are positive parts

of principal values of strain tensor,

1- corresponds to Rankine criterion of maximum prin-
cipal stress and is based on the positive part of the

effective stress (ε̃ = 1
E

√√√√ 3∑
I=1

< σ̄I >
2), where < σ̄I >

are the positive parts of principal values of the effec-
tive stress tensor σ̄ = De : ε,

2- equivalent strain defined as energy norm normalized
by Young’s modulus to obtain strain-like quantity

(ε̃ =
√

ε:D:ε
E )

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat
Features Adaptivity support

Table 11: Isotropic Damage model in tension - summary.

principle of energy equivalence and on the construction of the inverse integrity
tensor by integration of a scalar over all spatial directions. Since the model uses
certain concepts from the microplane theory, it is called the microplane-based
damage model (MDM).

The general structure of the MDM model is schematically shown in Fig.
6 and the basic equations are summarized in Table 13. Here, ε and σ are
the (nominal) second-order strain and stress tensors with components εij and
σij ; e and s are first-order strain and stress tensors with components ei and
si, which characterize the strain and stress on “microplanes” of different ori-
entations given by a unit vector n with components ni; ψ is a dimensionless
compliance parameter that is a scalar but can have different values for different
directions n; the symbol δ denotes a virtual quantity; and a sumperimposed
tilde denotes an effective quantity, which is supposed to characterize the state
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Description Nonlocal isotropic damage model for concrete in tension
Record Format idmnl1 d(rn) # E(rn) # n(rn) # e0(rn) # ef(rn) # tAlpha(rn) #
Parameters - num material model number

- d material density
- E Young modulus
- n Poisson ratio
- ef εf is a model parameter that controls the post-peak
slope (the tangent modulus just after the peak is Et =
−ft/(εf − ε0))
- e0 max effective strain at peak
- r nonlocal interaction radius
- tAlpha thermal dilatation coefficient
- regionMap map indicating the regions (currently region is
characterized by cross section number) to skip for nonlo-
cal avaraging. The elements and corresponding IP are not
taken into account in nonlocal averaging process if corre-
sponding regionMap value is nonzero.
- equivstraintype Allows to choose from different definitions
of equivalent strain, which is a scalar measure of the strain
level. For the description, see table 11.

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat
Features Adaptivity support

Table 12: Nonlocal isotropic Damage model in tension - summary.

of the intact material between defects such as microcracks or voids.

Table 13: Basic equations of microplane-based anisotropic damage model

ẽ = ε̃ · n sT = ψs s = σ · n

σ̃ : δε̃ =
3

2π

∫
Ω

sT · δẽ dΩ δs · e = dsT · ẽ δσ : ε =
3

2π

∫
Ω

δs · edΩ

σ̃ =
3

2π

∫
Ω

(sT ⊗ n)sym dΩ e = ψẽ ε =
3

2π

∫
Ω

(e⊗ n)sym dΩ

Combining the basic equations, it is possible to show that the components
of the damaged material compliance tensor are given by

Cijkl = MpqijMrsklC
e
pqrs (34)

where Cepqrs are the components of the elastic material compliance tensor,

Mijkl = 1
4 (ψikδjl + ψilδjk + ψjkδil + ψjlδik) (35)

are the components of the so-called damage effect tensor, and

ψij =
3

2π

∫
Ω

ψ ninj dΩ (36)
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Figure 6: Structure of microplane-based anisotropic damage model

are the components of the second-order inverse integrity tensor. The integra-
tion domain Ω is the unit hemisphere. In practice, the integral over the unit
hemisphere is evaluated by summing the contribution from a finite number of
directions, according to one of the numerical integration schemes that are used
by microplane models.

The scalar variable ψ characterizes the relative compliance in the direction
given by the vector n. If ψ is the same in all directions, the inverse integrity
tensor evaluated from (36) is equal to the unit second-order tensor (Kronecker
delta) multiplied by ψ, the damage effect tensor evaluated from (35) is equal
to the symmetric fourth-order unit tensor multiplied by ψ, and the damaged
material compliance tensor evaluated from (34) is the elastic compliance tensor
multiplied by ψ2. The factor multiplying the elastic compliance tensor in the
isotropic damage model is 1/(1−ω), and so ψ corresponds to 1/

√
1− ω. In the

initial undamaged state, ψ = 1 in all directions. The evolution of ψ is governed
by the history of the projected strain components. In the simplest case, ψ is
driven by the normal strain eN = εijninj . Analogy with the isotropic damage
model leads to the damage law

ψ = f(κ) (37)

and loading-unloading conditions

g(eN , κ) ≡ eN − κ ≤ 0, κ̇ ≥ 0, κ̇g(eN , κ) = 0 (38)

in which κ is a history variable that represents the maximum level of normal
strain in the given direction ever reached in the previous history of the mate-
rial. An appropriate modification of the exponential softening law leads to the
damage law

f(κ) =


1 if κ ≤ e0√

κ
e0

exp
(
κ−e0
ef−e0

)
if κ > e0

(39)

where e0 is a parameter controlling the elastic limit, and ef > e0 is another
parameter controlling ductility. Note that softening in a limited number of di-
rections does not necessarily lead to softening on the macroscopic level, because
the response in the other directions remains elastic. Therefore, e0 corresponds
to the elastic limit but not to the state at peak stress.

If the MDM model is used in its basic form described above, the compres-
sive strength turns out to depend on the Poisson ratio and, in applications to
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concrete, its value is too low compared to the tensile strength. The model is de-
signed primarily for tensile-dominated failure, so the low compressive strength
is not considered as a major drawback. Still, it is desirable to introduce a
modification that would prevent spurious compressive failure in problems where
moderate compressive stresses appear. The desired effect is achieved by redefin-
ing the projected strain eN as

eN =
εijninj

1− m

Ee0
σkk

(40)

where m is a nonnegative parameter that controls the sensitivity to the mean
stress, σkk is the trace of the stress tensor, and the normalizing factor Ee0 is
introduced in order to render the parameter m dimensionless. Under compres-
sive stress states (characterized by σkk < 0), the denominator in (40) is larger
than 1, and the projected strain is reduced, which also leads to a reduction of
damage. A typical recommended value of parameter m is 0.05.

Nonlocal formulation Nonlocal formulation of the MDM model is based
on the averaging of the inverse integrity tensor. This roughly corresponds to
the nonlocal isotropic damage model with averaging of the compliance variable
γ = ω/(1 − ω), which does not cause any spurious locking effects. In equation
(35) for the evaluation of the damage effect tensor, the inverse integrity tensor
is replaced by its weighted average with components

ψ̄ij(x) =
∫
V

α(x, ξ)ψij(ξ)dξ (41)

By fitting a wide range of numerical results, it has been found that the
parameters of the nonlocal MDM model can be estimated from the measurable
material properties using the formulas

λf =
EGf
Rf2

t

(42)

λ =
λf

1.47− 0.0014λf
(43)

e0 =
ft

(1−m)E(1.56 + 0.006λ)
(44)

ef = e0[1 + (1−m)λ] (45)

where E is Young’s modulus, Gf is the fracture energy, ft is the uniaxial tensile
strength, m is the compressive correction factor, typically chosen as m = 0.05,
and R is the radius of nonlocal interaction reflecting the internal length of the
material.

Input Record The model description and parameters are summarized in ta-
ble 14.
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Description MDM Anisotropic damage model
Common parameters

Record Format mdm d(rn) # nmp(ins) # talpha(rn) # parmd(rn) # non-
loc(in) # formulation(in) # mode(in) #

Parameters -num material model number
- D material density
- nmp number of microplanes used for hemisphere integra-
tion, supported values are 21,28, and 61
- talpha thermal dillatation coeff
- parmd
- nonloc
- formulation
- mode

Nonlocal variant I
Additional params r(rn) # efp(rn) # ep(rn) #

-r nonlocal interaction radius
-efp εfp is a model parameter that controls the post-peak
slope εfp =εf − ε0, where εf is strain at zero stress level.
-ep max effective strain at peak ε0

Nonlocal variant II
Additional params r(rn) # gf(rn) # ft(rn) #

-r nonlocal intraction radius
-gf fracture energy
-ft tensile strength

Local variant I
Additional params efp(rn) # ep(rn) #

-efp εfp is a model parameter that controls the post-peak
slope εfp =εf − ε0, where εf is strain at zero stress level.
-ep max effective strain at peak ε0

Local variant II
Additional params gf(rn) # ep(rn) #

-gf fracture energy
-ep max effective strain at peak ε0

Supported modes 3dMat, PlaneStress
Features Adaptivity support

Table 14: MDM model - summary.
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1.4 Material models specific to concrete

1.4.1 Mazars damage model for concrete

This isotropic damage model assumes that the stiffness degradation is isotropic,
i.e., stiffness moduli corresponding to different directions decrease proportionally
and independently of direction of loading. It introduces two damage parameters
ωt and ωc that are computed from the same equivalent strain using two different
damage functions gt and gc. The gt is identified from the uniaxial tension tests,
while gc from compressive test. The damage parameter for general stress states
ω is obtained as a linear combination of ωt and ωc: ω = αtgt + αcgc, where the
coefficients αt and αc take into account the character of the stress state. The
damaged stiffness tensor is expressed as D = (1−ω)De. Damage evolution law
is postulated in an explicit form, relating damage parameter and scalar measure
of largest reached strain level in material, taking into account the principle of
preserving of fracture energy Gf . The equivalent strain, i.e., a scalar measure
of the strain level is defined as norm from positive principal strains. The model
description and parameters are summarized in table 15.

Description Mazars damage model for concrete
Record Format mazarsmodel d(rn) # E(rn) # n(rn) # e0(rn) # ac(rn) #

bc(rn) # beta(rn) # hreft(rn) # hrefc(rn) # version(in) #
at(rn) # [ bt(rn) #] tAlpha(rn) #

Parameters - num material model number
- d material density
- E Young modulus
- n Poisson ratio
- tAlpha thermal dilatation coefficient
- version Model variant. if 0 specified, the original form
gt = 1.0 − (1.0 − At) ∗ ε0/κ − At ∗ exp(−Bt ∗ (κ − ε0));
of tension damage evolution law is used, if equal 1, the
modified law used which asymptotically tends to zero gt =
1.0− (ε0/κ) ∗ exp((ε0 − κ)/At)
- ac,bc material parameters related to the shape of uniaxial
compression curve (A sample set used by Saouridis is Ac =
1.34, Bc = 2537
- at, [bt] material parameters related to the shape of uniaxial
tension curve. Meaning dependent on version parameter.
- beta coefficient reducing the effect of damage under re-
sponse under shear. Default value set to 1.06
- hreft, hrefc reference characteristic lengths for tension and
compression. The material parameters are specified for ele-
ment with these characteristic lengths. The current element
then will have the same COD (Crack Opening Displace-
ment) as reference one.

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat

Table 15: Mazars Damage model - summary.
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1.4.2 Nonlocal Mazars damage model for concrete

The nonlocal variant of Mazars damage model for concrete. Model based on
nonlocal averaging of equivalent strain. The nonlocal averaging acts as a pow-
erful localization limiter. The bell-shaped nonlocal averaging function is used.
The model description and parameters are summarized in table 16.

Description Nonlocal Mazars damage model for concrete
Record Format mazarsmodelnl r(rn) # E(rn) # n(rn) # e0(rn) # ac(rn) #

bc(rn) # beta(rn) # version(in) # at(rn) # [ bt(rn) #] r(rn) #
tAlpha(rn) #

Parameters - num material model number
- d material density
- E Young modulus
- n Poisson ratio
- tAlpha thermal dilatation coefficient
- version Model variant. if 0 specified, the original form
gt = 1.0 − (1.0 − At) ∗ ε0/κ − At ∗ exp(−Bt ∗ (κ − ε0));
of tension damage evolution law is used, if equal 1, the
modified law used which asymptotically tends to zero gt =
1.0− (ε0/κ) ∗ exp((ε0 − κ)/At)
- ac,bc material parameters related to the shape of uniaxial
compression curve (A sample set used by Saouridis is Ac =
1.34, Bc = 2537
- at, [bt] material parameters related to the shape of uniaxial
tension curve. Meaning dependent on version parameter.
- beta coefficient reducing the effect of damage under re-
sponse under shear. Default value set to 1.06
- r parameter specifying the width of nonlocal averaging
zone

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat

Table 16: Nonlocal Mazars Damage model - summary.

1.4.3 CebFip78 model for concrete aging

Implementation of CebFip78 material model for concrete aging. The model
description and parameters are summarized in table 17.

1.4.4 DoublePowerLaw model for concrete aging

Implementation of CebFip78 material model for concrete aging. The model
description and parameters are summarized in table 18.

1.4.5 B3 model for concrete aging

Implementation of B3 material model for concrete aging. The model description
and parameters are summarized in table 19.
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Description CebFip78 Material model for concrete aging
Record Format CebFip78 n(rn) # relMatAge(rn) # E28(rn) # fibf(rn) #

kap a(rn) # kap c(rn) # kap tt(rn) # u(rn) #
Parameters - num material model number

- E28 Young modulus at age of 28 days [MPa]
- n Poisson ratio
- fibf basic creep coefficient
- kap a coefficient of hydrometric conditions
- kap c coefficient of type of cement
- kap tt coeficient of temperature effects
- u surface imposed to environment [mm2]; temporary here;
should be in crosssection level
- relmatage relative material age

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat, 2dPlate-
Layer,2dBeamLayer, 3dShellLayer

Table 17: CebFip78 Material model - summary.

Description Double power law - like material model for concrete aging
Record Format doublepowerlaw n(rn) # relMatAge(rn) # E28(rn) #

fi1(rn) # m(rn) # n(rn) # alpha(rn) #
Parameters - num material model number

- E28 Young modulus at age of 28 days [MPa]
- n Poisson ratio
- fibf basic creep coefficient
- m coefficient
- n coefficient
- alpha coeficient
- relmatage relative material age

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat, 2dPlate-
Layer,2dBeamLayer, 3dShellLayer

Table 18: Double power law material model - summary.

1.4.6 Microplane model M4

Implementation of Microplane model M4. This model is based on microplane
concept. It describes the complex 3d behavior of material. However, the objec-
tivity of model with regard to element size is unsolved - the parameters should
be fitted for each element size. Since the stiffness matrix is not provided, a lin-
ear elastic is provided. This cause very slow convergence, when used in implicit
codes. The model description and parameters are summarized in table 20.
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Description B3 material model for concrete aging
Record Format B3mat n(rn) # relMatAge(rn) # fc(rn) # cc(rn) # w/c(rn) #

a/c(rn) # t0(rn) # alpha1(rn) # alpha2(rn) # ks(rn) # hum(rn) #
vs(rn) # noshrinkage(in) #

Parameters - num material model number
- n Poisson ratio
- relmatage relative material age
- fc 28-day standard cylinder compression strength in MPa
- cc cement content of concrete in kg m−3
- w/c ratio (by weight) of water to cementitious material
- a/c ratio (by weight) of aggregate to cement
- t0 age when drying begins (in days)
- alpha1,alpha2 shrinkage parameters
- ks cross section shape factor
- hum relative humidity of the environment
- vs volume to surface ratio (in m)
- noshrinkage flag, if nonzero shrinkage is not taken into
account

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat, 2dPlate-
Layer,2dBeamLayer, 3dShellLayer

Table 19: B3 material model - summary.

Description M4 material model
Record Format microplane m4 nmp(in) # c3(rn) # c20(rn) # k1(rn) #

k2(rn) # k3(rn) # k4(rn) # E(rn) # n(rn) #
Parameters - nmp number of microplanes, supported values are 21, 28

and 61
- n Poisson ratio
- E Young modulus
- c3,c20, k1, k2, k3, k4 model parameters

Supported modes 3dMat

Table 20: M4 - summary.
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1.5 Material model for composite brittle damage

The model is designed for transversely isotropic elastic material defined by five
elastic material constants. Axis 1 represents the principal direction. The rela-
tion to orthotropic material reads

ν12 = ν13, ν21 = ν31, ν23 = ν32, E22 = E33 (46)
G12 = G13 = G21 = G31, G23 = G32 (47)

ν12 = ν13

E11
=
ν21 = ν31

E22
,
ν31 = ν21

E33
=
ν13 = ν12

E11
(48)

Material orientation on finite element can be specified with mlcs optional pa-
rameter. If unspecified, material orientation is the same as the global coordinate
system. This array contains six numbers, where first three numbers represent
directional vector of local x-axis, and next three numbers represent directional
vector of local y-axis with the reference to the global coordinate system. The
composite material is extended to 1d and is suitable for trusses. In such partic-
ular case, only xx components are considered from material definition.

The linear softening occurs after reaching a critical stress ft in mode I, see
Fig. 7. Orientation of cracks is assumed to be orthogonal and aligned with
orientation of material axis [7, pp.236]. The transverse isotropy is generally
lost upon fracture, material becomes orthotropic and six damage parameters
d1, d2, . . . d6 are introduced.

Figure 7: Implemented stress-strain evolution with damage for 1D case. Tension
and compression are separated, but sharing the same damage parameter.

The compliance matrix, in the secant form and including damage parame-
ters, reads
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1−d1
E11

− ν21
E22

− ν31
E33

0 0 0
− ν12
E11

1−d2
E22

− ν32
E33

0 0 0
− ν13
E11

− ν23
E22

1−d3
E33

0 0 0
0 0 0 (1−d4)(1+ν12)

E22
0 0

0 0 0 0 1−d5
G31

0
0 0 0 0 0 1−d6

G12


(49)

The evolution of damage in 3D space is based on the evolution of strain in
corresponding 1D direction according to 7 and expressed as

(1− di)Ei =
σi
εi

(50)

di = 1− σi
Eiεi

(51)

ε0,i − εE,i =
2Gf,i
f0,ili

(52)

σi =
f0,i(ε0,i − εi)
(ε0,i − εE,i)

= f0,i −
f2

0,ili

2Gf,i
(εi − εE,i) (53)

where ε0,i is strain at zero stress, f0,i is maximum given stress, εE,i is strain
at maximum stress, Gf,i is fracture energy disregarding the characteristic size
of finite element, li is the characteristic length associated with element size and
interpolation order. The solution is similar to section and proceeds in total
strain and strees formulation. Fig. 8 shows a typical performance for damage
in one direction.

Figure 8: Typical loading/unloading material performance for homogenized
stress and strain in direction11. Note that damage parameter is common for
tension and compression.
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Description Material for composite brittle damage
Record Format compdammat num(in) # d(rn) # Exx(rn) # EyyEzz(rn) #

nuxynuxz(rn) # nuyz(rn) # GxyGxz(rn) # [Ten-
sion f0 Gf(rn) #] [Compres f0 gf(rn) #]

Parameters - num material model number
- d material density
- Exx Young’s modulus for principal direction xx
- EyyEzz Young’s modulus in othogonal directions to the
principal direction xx
- nuxynuxz Poisson’s ratio in xy and xz directions
- nuyz Poisson’s ratio in yz direction
- GxyGxz shear modulus in xy and xz directions
- Tension f0 Gf array with six pairs of positive numbers.
Each pair desribes maximum stress in tension and fracture
energy for each direction (xx, yy, zz, yz, zx, xy)
- Compres f0 gf array with six pairs of numbers. Each pair
desribes maximum stress in compression (given as a nega-
tive number) and positive fracture energy for each direction
(xx, yy, zz, yz, zx, xy)

Supported modes 3dMat, 1dMat

Table 21: Brittle damage for composites - summary.
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2 Material Models for Transport Problems

2.1 Isotropic Linear Material

Linear isotropic material model for transport problems. The model parameters
are summarized in table 22.

Description Linear isotropic elastic material
Record Format IsoHeat num(in) # d(rn) # k(rn) # c(rn) #
Parameters - num material model number

- d material density
- k Conductivity
- n Specific heat

Supported modes 2dHeat

Table 22: Linear Isotropic Material - summary.

2.2 Coupled heat and mass transfer material model

Coupled heat and mass transfer material model. Source: T. Krejci doctoral
thesis; Bazant and Najjar, 1972; Pedersen, 1990. Assumptions:water vapor is
the only driving mechanism; relative humidity is from range 0.2 - 0.98 (I and II
regions). The model parameters are summarized in table 23.
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Description Coupled heat and mass transfer material model
Record Format HeMotk num(in) # d(rn) # a 0(rn) # nn(rn) # phi c(rn) #

delta wet(rn) # w h(rn) # n(rn) # a(rn) # latent(rn) # c(rn) #
rho(rn) # chi eff(rn) # por(rn) # rho gws(rn) #

Parameters - num material model number
- d, rho material density
- a 0 constant (obtained from experiments) a 0 [Bazant and
Najjar, 1972]
- nn constant-exponent (obtained from experiments) n
[Bazant and Najjar, 1972]
- phi c constant-relative humidity (obtained from experi-
ments) phi c [Bazant and Najjar, 1972]
- delta wet constant-water vapor permeability (obtained
from experiments) delta wet [Bazant and Najjar, 1972]
- w h constant water content (obtained from experiments)
w h [Pedersen, 1990]
- n constant-exponent (obtained from experiments) n [Ped-
ersen, 1990]
- a constant (obtained from experiments) A [Pedersen,
1990]
- latent latent heat of evaporation
- c thermal capacity
- chi eff effective thermal conductivity
- por porosity
- rho gws saturation volume density

Supported modes 2dHeMo

Table 23: Coupled heat and mass transfer material model - summary.

31



3 Material Models for Fluid Dynamic

3.1 Newtonian Fluid

Constitutive model of Newtonian fluid. The model parameters are summarized
in table 24.

Description Newtonian Fluid material
Record Format NewtonianFluid num(in) # d(rn) # mu(rn) #
Parameters - num material model number

- d material density
- mu viscosity

Supported modes 2dFlow

Table 24: Newtonian Fluid material - summary.

3.2 Bingham Fluid

Constitutive model of Bingham fluid. This is a constitutive model of non-
Newtonian type. The model parameters are summarized in table 25.

In the Bingham model the flow is characterized by following constitutive
equation

τ = τ 0 + µγ̇ if τ̇ ≥ τ0 (54)
γ̇ = 0 if τ̇ ≤ τ0 (55)

where τ is the shear stress applied to material, τ̇ =
√
τ : τ is the shear stress

measure, γ̇ is the shear rate, τ 0 is the yield stress, and µ is the plastic vis-
cosity. The parameters for the model can be in general determined using two
possibilities: (i) stress controlled rheometer, when the stress is applied to mate-
rial and shear rate is measured, and (ii) shear rate controlled rheometer, where
concrete is sheared and stress is measured. However, most of the widely used
tests are unsatisfactory in the sense, that they measure only one parameter.
These one-factor tests include slump test, penetrating rod test, and Ve-Be test.
Recently, some tests providing two parameters on output have been designed
(BTRHEOM, IBB, and BML rheometers). Also a refined version of the standard
slump test has been developed for estimating yield stress and plastic viscosity.
The test is based on measuring the time necessary for the upper surface of the
concrete cone in the slump to fall a distance 100 mm. Semi-empirical models
are then proposed for estimating yield stress and viscosity based on measured
results. The advantage is, that this test does not require any special equipment,
provided that the one for the standard version is available.

In order to avoid numerical difficulties caused by the existence of the sharp
angle in material model response at τ = τ0, the numerical implementation uses
following smoothed relation for viscosity

µ = µ0 +
τ0
γ̇

(1− e−mγ̇) (56)

where m is so called stress growth parameter. The higher value of parameter m,
the closer approximation of the original constitutive equation (54) is obtained.
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Description Bingham fluid material
Record Format BinghamFluid num(in) # d(rn) # mu0(rn) # tau0(rn) #
Parameters - num material model number

- d material density
- mu0 viscosity
- tau0 Yield stress

Supported modes 2dFlow

Table 25: Bingham Fluid material - summary.

3.3 Two-Fluid material

Material coupling the behaviour of two particulat materials based on rule of
mixture. The weighting factor is VOF fraction. The model parameters are
summarized in table 26.

Description Two-Fluid material
Record Format twofluidmat num(in) # mat(ia) #
Parameters - num material model number

- mat integer array contaning two numbers representing
numbers of material models of which the receiver is com-
posed. Material with index 0 is a material, that is fully
active in a cell with VOF=0, material with index 1 is a
material fuully active in a cell with VOF=1.

Supported modes 2dFlow

Table 26: Two-Fluid material - summary.
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4 Material drivers - theory & application

The purpose of this section is to present the theoretical backgroung of some
handy general purpose algorithms, that are provided in oofem in the form of
general material base classes. They can significantly facilitate the implemen-
tation of particular material models that are based on such concepts. Typical
example can be a general purpose plasticity class, that implements general stress
return and stifness matrix evaluation algorithms, based on provided methods
for computing yield functions and corresponding derivatives. Particular models
are simply derived from the base classes, inheriting common algorithms.

4.1 Multisurface plasticity driver - MPlasticMaterial class

In this section, a general multisurface plasticity theory with hardening/softening
is reviewed. The presented algorithms are implemented in MPlasticMaterial
class.

4.1.1 Plasticity overview

Let σ, ε, and εp be the stress, total strain, and plastic strain vectors, respectively.
It is assumed that the total strain is decomposed into reversible elastic and
irreversible plastic parts

ε = εe + εp (57)

The elastic response is characterized in terms of elastic constitutive matrix D
as

σ = Dεe = D(ε− εp) (58)

As long as the stress remains inside the elastic domain, the deformation process
is purely elastic and the plastic strain does not change. It is assumed that the
elastic domain, denoted as IE is bounded by a composite yield surface. It is
defined as

IE = {(σ,κ)|fi(σ,κ) < 0, for all i ∈ {1, · · · ,m}} (59)

where fi(σ,κ) are m ≥ 1 yield functions intersecting in a possibly non-smooth
fashion. The vector κ contains internal variables controlling the evolution of
yield surfaces (amount of hardening or softening). The evolution of plastic
strain εp is expressed in Koiter’s form. Assuming the non-associated plasticity,
this reads

ε̇p =
m∑
i=1

λi∂σgi(σ,κ) (60)

where gi are plastic potential functions. The λi are referred as plastic consis-
tency parameters, which satisfy the following Kuhn-Tucker conditions

λi ≥ 0, fi ≤ 0, and λifi = 0 (61)

These conditions imply that in the elastic regime the yield function must remain
negative and the rate of the plastic multiplier is zero (plastic strain remains
constant) while in the plastic regime the yield function must be equal to zero
(stress remains on the surface) and the rate of the plastic multiplier is positive.
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The evolution of vector of internal hardening/softening variables κ is expressed
in terms of a general hardening/softening law of the form

κ̇ = κ̇(σ,λ) (62)

where λ is the vector of plastic consistency parameters λi.

4.1.2 Closest point return algorithm

Let us assume, that at time tn the total and plastic strain vectors and internal
variables are known

{εn, εpn,κn} given at tn
By applying an implicit backward Euler difference scheme to the evolution equa-
tions (58 and 60) and making use of the initial conditions the following discrete
non-linear system is obtained

εn+1 = εn + ∆ε (63)
σn+1 = D(εn+1 − εpn+1) (64)

εpn+1 = εpn +
∑

λi∂σgi(σn+1,κn+1) (65)

In addition, the discrete counterpart of the Kuhn-Tucker conditions becomes

fi(σn+1,κn+1) = 0 (66)
λin+1 ≥ 0 (67)

λin+1fi(σn+1,κn+1) = 0 (68)

In the standard displacement-based finite element analysis, the strain evolution
is determined by the displacement increments computed on the structural level.
The basic task on the level of a material point is to evaluate the stress evolution
generated by strain history. According to this, the strain driven algorithm
is assumed, i.e. that the total strain εn+1 is given. Then, the Kuhn-Tucker
conditions determine whether a constraint is active. The set of active constraints
is denoted as Jact and is defined as

Jact = {β ∈ {1, · · · ,m}|fβ = 0 & ḟβ = 0} (69)

Let’s start with the definition of the residual of plastic flow

Rn+1 = −εpn+1 + εpn +
∑
j∈Jact

λjn+1∂σgn+1 (70)

By noting that total strain εn+1 is fixed during the increment we can express
the plastic strain increment using (58) as

∆εpn+1 = −D∆σn+1 (71)

The linearization of the plastic flow residual (70) yields2

R+D−1∆σ +
∑

λ∂σσg∆σ +

+
∑

λ∂σκg · (∂σκ∆σ + ∂λκ∆λ) +
∑

∆λ∂σg = 0 (72)

2For brevity, the simplified notation is introduced: f = f(σ,κ), g = g(σ, κ), κ = κ(σ, λ),
and subscript n+ 1 is omitted.
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From the previous equation, the stress increment ∆σ can be expressed as

∆σ = −H−1
(
R+

∑
∆λ∂σg +

∑
λ∂σκg∂λκ∆λ

)
(73)

where H is algorithmic moduli defined as

H =
[
D−1 +

∑
λ∂σσg +

∑
λ∂σκg∂σκ

]
(74)

Differentiation of active discrete consistency conditions (66) yields

f + ∂σf∆σ + ∂κf(∂σκ∆σ + ∂λκ∆λ) = 0 (75)

Finally, by combining equations (73) and (75), one can obtain expression for
incremental vector of consistency parameters ∆λ[

V TH−1U − ∂κf∂λκ
]

∆λ = f − V TH−1R (76)

where the matrices U and V are defined as

U =
[
∂σg +

∑
λ∂σκg∂λκ

]
(77)

V = [∂σf + ∂κf∂σκ] (78)

Before presenting the final return mapping algorithm, the algorithm for de-
termination of the active constrains should be discussed. A yield surface fi,n+1

is active if λin+1 > 0. A systematic enforcement of the discrete Kuhn-Tucker
condition (66), which relies on the solution of return mapping algorithm, then
serves as the basis for determining the active constraints. The starting point in
enforcing (66) is to define the trial set

J trialact = {j ∈ {1, · · · ,m}|f trialj,n+1 > 0} (79)

where Jact ⊆ J trialact . Two different procedures can be adopted to determine the
final set Jact. The conceptual procedure is as follows

• Solve the closest point projection with Jact = J trialact to obtain final stresses,
along with λin+1, i ∈ J trialact .

• Check the sign of λin+1. If λin+1 < 0, for some i ∈ J trialact , drop the i−th
constrain from the active set and goto first point. Otherwise exit.

In the procedure 2, the working set J trialact is allowed to change within the
iteration process, as follows

• Let J (k)
act be the working set at the k-th iteration. Compute increments

∆λi,(k)
n+1 , i ∈ J

(k)
act .

• Update and check the signs of ∆λi,(k)
n+1 . If ∆λi,(k)

n+1 < 0, drop the i-th
constrain from the active set J (k)

act and restart the iteration. Otherwise
continue with next iteration.

If the consistency parameters ∆λi can be shown to increase monotonically
within the return mapping algorithm, the the latter procedure is preferred since
it leads to more efficient computer implementation.

The overall algorithm is convergent, first order accurate and unconditionally
stable. The general algorithm is summarized in table (4.1.2).
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1. Elastic predictor

(a) Compute Elastic predictor (assume frozen plastic flow)
σtrialn+1 = D (εn+1 − εpn)
f triali,n+1 = fi(σ

trial
n+1 ,κn), for i ∈ {1, · · · ,m}

(b) Check for plastic processes IF f triali,n+1 ≤ 0 for all i ∈ {1, · · · ,m} THEN:

Trial state is the final state, EXIT.

ELSE:

J
(0)
act = {i ∈ {1, · · · ,m}|f triali,n+1 > 0}
ε
p(0)
n+1 = εpn, κ

(0)
n+1 = κn, λ

i(0)
n+1 = 0

ENDIF

2. Plastic Corrector

(c) Evaluate plastic strain residual

σ
(k)
n+1 = D

(
εn+1 − εp(k)n+1

)
R

(k)
n+1 = −εp(k)n+1 + εpn +

∑
λ
i(k)
n+1∂σgi

(d) Check convergence

f
(k)
i,n+1 = fi(σ

(k)
n+1,κ

(k)
n+1)

if f
(k)
i,n+1 < TOL, for all i ∈ J(k)

act and ‖R(k)
n+1‖ < TOL then EXIT

(e) Compute consistent moduli

G =
[
V TH−1U − ∂κf∂λκ

]−1

(f) Obtain increments to consistency parameter

∆λ
(k)
n+1 = G{f − V TH−1R}(k)n+1

If using procedure 2 to determine active constrains, then update the
active set and restart iteration if necessary

(g) Obtain increments of plastic strains and internal variables

∆ε
p(k)
n+1 = D−1

{
R

(k)
n+1 +

∑
∆λ

i(k)
n+1∂σg

(k)
n+1 +

∑
λ
i(k)
n+1∂σκg

(k)
n+1∂λκ∆λ

i(k)
n+1

}
∆κ

(k)
n+1 = κ̇(σ(k)n+1 ,λkn+1)

(h) Update state variables

ε
p(k+1)
n+1 = ε

p(k)
n+1 + ∆ε

p(k)
n+1

κ
(k+1)
n+1 = κ

(k)
n+1 + ∆κ

(k)
n+1

λ
i(k+1)
n+1 = λ

i(k)
n+1 + ∆λ

(k)
n+1, i ∈ Jact

(i) Set k=k+1 and goto step (b)

Table 27: General multisurface closest point algorithm

4.1.3 Algorithmic stiffness

Differentiation of the elastic stress-strain relations (64) and the discrete flow
rule (65) yields

dσn+1 = D
(
dεn+1 − dεpn+1

)
(80)
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dεpn+1 =
∑(

λi∂σσgdσ + λi∂σκg
(
∂σκdσ + ∂λκdλ

i
)

+ dλi∂σg
)

(81)

Combining this two equations, one obtains following relation

dσ = Ξn+1

{
dεn+1 −

∑
λi∂σκg∂λκdλ

i −
∑

dλi∂σg
}

(82)

where Ξn+1 is the algorithmic moduli defined as

Ξn+1 =
[
D−1 +

∑
λi∂σσg +

∑
λ∂σκg∂σκ

]
(83)

Differentiation of discrete consistency condition yields

∂σf
idσ + ∂κf

i(∂σκdσ + ∂λκdλ) = 0 (84)

By substitution of (82) into (84) the following relation is obtained

dλ = G {V Ξdε} (85)

where matrix G is defined as

G =
[
V TΞU − ∂κf∂λκ

]−1

(86)

Finally, by substitution of (86) into (82) one obtains the algorithmic elastoplastic
tangent moduli

dσ
dε
|n+1 = Ξ−ΞU (V ΞU − [∂κf ][∂λκ])V Ξ (87)

4.1.4 Implementation of particular models

As follows from previous sections, a new plasticity based class has to provide only
some model-specific services. The list of services, that should be implemented
includes (for full reference, please consult documentation of MPlasticMaterial
class):

• method for computing the value of yield function (computeYieldValueAt
service)

• method for computing stress gradients of yield and load functions (method
computeStressGradientVector)

• method for computing hardening variable gradients of yield and load func-
tions (method computeKGradientVector)

• methods for computing gradient of hardening variables with respect to
stress and plastic multipliers vectors (computeReducedHardeningVarsSig-
maGradient and computeReducedHardeningVarsLamGradient methods)

• method for evaluating the increments of hardening variables due to reached
state (computeStrainHardeningVarsIncrement)

• methods for computing second order derivatives of load and yield func-
tions (computeReducedSSGradientMatrix and computeReducedSKGradi-
entMatrix methods). Necessary only if consistent stiffness is required.
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4.2 Isotropic Damage Model - IsotropicDamageMaterial
class

1.5 In this section, the implementation of an isotropic damage model will be
described. To cover the various models based on isotropic damage concept,
a base class IsotropicDamageMaterial is defined first, declaring the necessary
services and providing the implementation of them, which are general. The
derived classes then only implement a particular damage-evolution law.

The isotropic damage models are based on the simplifying assumption that
the stiffness degradation is isotropic, i.e., stiffness moduli corresponding to dif-
ferent directions decrease proportionally and independently of direction of load-
ing. Consequently, the damaged stiffness matrix is expressed as

D = (1− ω)De,

where De is elastic stiffness matrix of the undamaged material and ω is the
damage parameter. Initially, ω is set to zero, representing the virgin undam-
aged material, and the response is linear-elastic. As the material undergoes
the deformation, the initiation and propagation of microdefects decreases the
stiffness, which is represented by the growth of the damage parameter ω. For
ω = 1, the stiffness completely disappears.

In the present context, the D matrix represents the secant stiffness that
relates the total strain to the total stress

σ = Dε = (1− ω)Deε.

Similarly to the theory of plasticity, a loading function f is introduced. In
the damage theory, it is natural to work in the strain space and therefore the
loading function is depending on the strain and on an additional parameter κ,
describing the evolution of the damage. Physically, κ is a scalar measure of the
largest strain level ever reached. The loading function usually has the form

f(ε, κ) = ε̃(ε)− κ,

where ε̃ is the equivalent strain, i.e., the scalar measure of the strain level.
Damage can grow only if current state reaches the boundary of elastic domain
(f = 0). This is expressed by the following loading/unloading conditions

f ≤ 0, κ̇ ≥ 0, κ̇f = 0.

It remains to link the variable κ to the damage parameter ω. As both κ and ω
grow monotonically, it is convenient to postulate an explicit evolution law

ω = g(κ).

The important advantage of this explicit formulation is that the stress corre-
sponding to the given strain can be evaluated directly, without the need to
solve the nonlinear system of equations. For the given strain, the corresponding
stress is computed simply by evaluating the current equivalent strain, updat-
ing the maximum previously reached equivalent strain value κ and the damage
parameter and reducing the effective stress according to σ = (1− ω)Deε.

This general framework for computing stresses and stiffness matrix is com-
mon for all material models of this type. Therefore, it is natural to introduce
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the base class for all isotropic-based damage models which provides the gen-
eral implementation for the stress and stiffness matrix evaluation algorithms.
The particular models then only provide their equivalent strain and damage
evolution law definitions. The base class only declares the virtual services for
computing equivalent strain and corresponding damage. The implementation
of common services uses these virtual functions, but they are only declared at
IsotropicDamageMaterial class level and have to be implemented by the derived
classes.

Together with the material model, the corresponding status has to be de-
fined, containing all necessary history variables. For the isotropic-based damage
models, the only history variable is the value of the largest strain level ever
reached (κ). In addition, the corresponding damage level ω will be stored. This
is not necessary because damage can be always computed from corresponding
κ. The IsotropicDamageMaterialStatus class is derived from StructuralMateri-
alStatus class. The base class represents the base material status class for all
structural statuses. At StructuralMaterialStatus level, the attributes common
to all “structural analysis” material models - the strain and stress vectors (both
the temporary and non-temporary) are introduced. The corresponding services
for accessing, setting, initializing, and updating these attributes are provided.
Therefore, only the κ and ω parameters are introduced (both the temporary and
non-temporary). The corresponding services for manipulating these attributes
are added and services for context initialization, update, and store/restore op-
erations are overloaded, to handle the history parameters properly.
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