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1 Material Models for Structural Analysis

1.1 Elastic materials

1.1.1 Isotropic linear elastic material

Linear isotropic material model. The model parameters are summarized in
table 1.

Description Linear isotropic elastic material
Record Format IsoLE num(in) # d(rn) # E(rn) # n(rn) # tAlpha(rn) #
Parameters - num material model number

- d material density
- E Young modulus
- n Poisson ratio
- tAlpha thermal dilatation coefficient

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat, 2dPlateLayer,
2dBeamLayer, 3dShellLayer, 2dPlate, 2dBeam, 3dShell,
3dBeam, PlaneStressRot

Features Adaptivity support

Table 1: Linear Isotropic Material - summary.

1.1.2 Orthotropic linear elastic material

Linear orthotropic, linear elastic material model. The model parameters are
summarized in table 2. Local coordinate system, which determines axes of
material orthotrophy can by specified using lcs array. This array contains six
numbers, where the first three numbers represent directional vector of a local x-
axis, and next three numbers represent directional vector of a local y-axis. The
local z-axis is determined using the vector product. The right-hand coordinate
system is assumed.

Local coordinate system can also be specified using scs parameter. Then
local coordinate system is specified in so called “shell” coordinate system, which
is defined locally on each particular element and its definition is as follows:
principal z-axis is perpendicular to shell mid-section, x-axis is perpendicular to
z-axis and normal to user specified vector (so x-axis is parallel to plane, with
being normal to this plane) and y-axis is perpendicular both to x and z axes.
This definition of coordinate system can be used only with plates and shells
elements. When vector is parallel to z-axis an error occurs. The scs array
contain three numbers defining direction vector . If no local coordinate system
is specified, by default a global coordinate system is used.

For 3D case the material compliance matrix has the following form

C =


1/EX −νxy/Ex −νxz/Ex 0 0 0
−νyx/Ey 1/Ey −νyz/Ey 0 0 0
−νzx/Ez −νzy/Ez 1/Ez 0 0 0

0 0 0 1/Gyz 0 0
0 0 0 0 1/Gxz 0
0 0 0 0 0 1/Gxy

 (1)
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By inversion, the material stiffness matrix has the form

D =


dxx dxy dxz 0 0 0

dyy dyz 0 0 0
sym dzz 0 0 0

0 0 0 Gyz 0 0
0 0 0 0 Gxz 0
0 0 0 0 0 Gxy

 (2)

where ξ = 1− (νxy ∗νyx+νyz ∗νzy +νzx ∗νxz)− (νxy ∗νyz ∗νzx+νyx ∗νzy ∗νxz)
and

dxx = EX(1− νyz ∗ νzy)/ξ, (3)

dxy = Ey ∗ (νxy + νxz ∗ νzy)/ξ, (4)

dxz = Ez ∗ (νxz + νyz ∗ νxy)/ξ, (5)

dyy = Ey ∗ (1− νxz ∗ νzx)/ξ, (6)

dyz = Ez ∗ (νyz + νyx ∗ νxz)/ξ, (7)

dzz = Ez ∗ (1− νyx ∗ νxy)/ξ. (8)

Ei is the Young’s modulus in the i-th direction, Gij is the shear modulus in
ij plane, νij major Poisson’s ratio, and νji minor Poisson’s ratio. Assuming
that Ex > Ey > Ez, νxy > νyx etc., then the νxy is refered to as major
Poisson’s ratio, while νyx refered as minor Poisson’s ratio. Note, that there
is only nine independent material parameters, because of symmetry conditions.
The symmetry condition yields

νxyEy = νyxEx, νyzEz = νzyEy, νzxEx = νxzEz

The model description and parameters are summarized in table 2.

1.1.3 Hyperelastic material

This material model can describe elastic behavior at large strains. A hypere-
lastic model postulates the existence of free energy potential. Existence of the
potential implies reversibility of deformations and no energy dissipation during
loading process. Here we use the free energy function introduced in [9]

ρ0ψ =
1

4

(
K − 2

3
G

)(
J2 − 2lnJ− 1

)
+G (E : I − lnJ) (9)

where K is the bulk modulus, G is the shear modulus, J is the Jacobian (deter-
minant of the deformation gradient, corresponding to the ratio of the current
and initial volume) and E is the Green-Lagrange strain. Then stress-strain law
can be derived from (9) as

S = ρ0
∂ψ

∂E
=

1

2

(
K − 2

3
G

)(
J2 − 1

)
C−1 +G

(
I −C−1

)
(10)

where S is the second Piola-Kirchhoff stress, E is the Green-Lagrange strain
and C is the right Cauchy-Green tensor. The model description and parameters
are summarized in table 3.
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Description Orthotropic, linear elastic material
Record Format OrthoLE num(in) # d(rn) # Ex(rn) # Ey(rn) # Ez(rn) #

NYyz(rn) # NYxz(rn) # NYxy(rn) # Gyz(rn) # Gxz(rn) #
Gxy(rn) # tAlphax(rn) # tAlphay(rn) # tAlphaz(rn) #
[ lcs(ra) #] [ scs(ra) #]

Parameters - num material model number
- d material density
- Ex, Ey, Ez Young moduluses for x,y, and z directions
- NYyz, NYxz, NYxy major Poisson’s ratio coefficients
- Gyz, Gxz, Gxy Shear moduluses
- tAlphax, tAlphay, tAlphaz thermal dilatation coefficients
in x,y,z directions
- lcs Array defining local material x and y axes of orthotro-
phy
- scs Array defining a normal vector n. The local x axis is
parallel to plane with n being plane normal. The material
local z-axis is perpendicular to shell mid-section.

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat, 2dPlateLayer,
2dBeamLayer, 3dShellLayer, 2dPlate, 2dBeam, 3dShell,
3dBeam, PlaneStressRot

Table 2: Orthotropic, linear elastic material – summary.

Description Hyperelastic material
Record Format HyperMat (in) # d(rn) # K(rn) # G(rn) #
Parameters - material number

- d material density
- K bulk modulus
- G shear modulus

Supported modes 3dMat

Table 3: Hyperelastic material - summary.

1.2 Plasticity-based material models

1.2.1 Drucker-Prager model

The Drucker-Prager plasticity model1 is an isotropic elasto-plastic model based
on a yield function

f (σ, τY) = F (σ)− τY (11)

with the pressure-dependent equivalent stress

F (σ) = αI1 +
√
J2 (12)

As usual, σ is the stress tensor, τY is the yield stress under pure shear, and I1
and J2 are the first invariant and second deviatoric invariant of the stress tensor.
The friction coefficient α is a positive parameter that controls the influence of
the pressure on the yield limit, important for cohesive-frictional materials such

1Contributed by Simon Rolshoven, LSC, FENAC, EPFL.
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as concrete, soils or other geomaterials. The flow rule is derived from the plastic
potential

g (σ) = αψI1 +
√
J2 (13)

where αψ is the dilatancy coefficient. An associated model with α = αψ would
overestimate the dilatancy of concrete, so the dilatancy coefficient is usually
chosen smaller than the friction coefficient. The model is described by the
equations

σ = D : (ε− εp) (14)

τY = h(κ) (15)

ε̇p = λ̇
∂g

∂σ
= λ̇

(
αψδ +

s

2
√
J2

)
(16)

κ̇ =

√
2

3
‖ε̇p‖ (17)

λ̇ ≥ 0, f (σ, τY) ≤ 0, λ̇ f (σ, τY) = 0 (18)

which represent the linear elastic law, hardening law, evolution laws for plastic
strain and hardening variable, and the loading-unloading conditions. In the
above, D is the elastic stiffness tensor, ε is the strain tensor, εp is the plastic
strain tensor, λ is the plastic multiplier, δ is the unit second-order tensor, s
is the deviatoric stress tensor, κ is the hardening variable, and a superior dot
marks the derivative with respect to time. The flow rule has the form given
in Eq. (16) at all points of the conical yield surface with the exception of its
vertex, located on the hydrostatic axis.

For the present model, the evolution of the hardening variable can be explic-
itly linked to the plastic multiplier. Substituting the flow rule (16) into Eq. (17)
and computing the norm leads to

κ̇ = kλ̇ (19)

with a constant parameter k =
√

1/3 + 2α2
ψ, so the hardening variable is pro-

portional to the plastic multiplier. For α = αψ = 0, the associated J2-plasticity
model is recovered as a special case.

In the simplest case of linear hardening, the hardening function is a linear
function of κ, given by

h(κ) = τ0 +HEκ (20)

where τ0 is the initial yield stress, and H is the hardening modulus normalized
with the elastic modulus. Alternatively, an exponential hardening function

h(κ) = τlimit + (τ0 − τlimit) e−κ/κc (21)

can be used for a more realistic description of hardening.
The stress-return algorithm is based on the Newton-iteration. In plasticity,

this is commonly called Closest-Point-Projection (CPP), and it generally leads
to quadratic convergence. The implemented algorithm is convergent in any
stress case, but in the vicinity of the vertex region, quadratic convergence might
be lost because of insufficient regularity of the yield function.

The algorithmic tangent stiffness matrix is implemented for both the reg-
ular case and the vertex region. Generally, the error decreases quadratically
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(of course only asymptotically). Again, in the vicinity of the vertex region,
quadratic convergence might be lost due to insufficient regularity. Furthermore,
the tangent stiffness matrix does not always exist for the vertex case. In these
cases, the elastic stiffness is used instead. It is generally safer (but slower) to
use the elastic stiffness if you encounter any convergence problems, especially if
your problem is tension-dominated.

Description DP material
Record Format DruckerPrager num(in) # d(rn) # tAlpha(rn) # E(rn) #

n(rn) # alpha(rn) # alphaPsi(rn) # ht(in) # iys(rn) # lys(rn) #
hm(rn) # kc(rn) # [ yieldtol(rn) #]

Parameters - num material model number
- d material density
- tAlpha thermal dilatation coefficient
- E Young modulus
- n Poisson ratio
- alpha friction coefficient
- alphaPsi dilatancy coefficient
- ht hardening type, 1: linear hardening, 2: exponential
hardening
- iys initial yield stress in shear, τ0
- lys limit yield stress for exponential hardening, τlimit

- hm hardening modulus normalized with E-modulus (!)
- kc κc for the exponential softening law
- yieldtol tolerance of the error in the yield criterion, default
value 1.e-14

Table 4: DP material - summary.

1.2.2 Hardening plasticity model with Mises yield condition

This model is appropriate for plastic yielding in material such as metals. It is
based on the Mises yield condition (in terms of the second deviatoric invariant,
J2), associated flow rule and linear isotropic hardening driven by the cumulative
plastic strain. The model can be used in the small-strain context, with additive
split of the strain tensor into the elastic and plastic parts, or in the large-strain
context, with multiplicative split of the deformation gradient and with yield
condition formulated in terms of Kirchhoff stress (which is the true Cauchy
stress multiplied by the Jacobian).

Small strain formulation: The basic equations include the additive decom-
position of strain into elastic and plastic parts,

ε = εe + εp, (22)

the stress strain law
σ = D : (ε− εp), (23)

the yield condition

f(s, κ) =

√
3

2
s : s− σY (κ), (24)
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the incremental definition of cumulative plastic strain

κ̇ = ‖ε̇p‖, (25)

the linear hardening law
σY (κ) = Hκ, (26)

the evolution law for the plastic strain

ε̇p = λ̇
∂f

∂s
, (27)

and the loading-unloading conditions

λ̇ > 0 f(s, κ) ≤ 0 λ̇f(s, κ) = 0. (28)

In the equations above, ε is the strain tensor, εe is the elastic strain tensor, εp
is the plastic strain tensor, D is the elastic stiffness tensor, s is the deviatoric
stress tensor, σY is the magnitude of stress at yielding under uniaxial tension
(or compression), κ is the cumulated plastic strain, H is the hardening modulus
and λ is the plastic multiplier.

Large strain formulation is based on the introduction of an intermediate
local configuration, relative to which the elastic response is characterized. This
notion leads to a multiplicative decomposition of deformation gradient into elas-
tic and plastic parts:

F = F eF p. (29)

The stress-evaluation algorithm can be based on the classical radial return map-
ping; see [9] for more details. The model description and parameters are sum-
marized in table 5.

Description Von Mises Plasticity with isotropic hardening
Record Format MisesMat (in) # d(rn) # E(rn) # n(rn) # sig0(rn) # H(rn) #
Parameters - material number

- d material density
- E Young modulus
- n Poisson ratio
- sig0 initial yield stress in uniaxial tension(compression)
- H hardening modulus

Supported modes 3dMat,3dMatF

Table 5: Mises plasticity – summary.

1.2.3 Perfectly plastic material with Mises yield condition

This is an older model, kept here for compatibility with previous versions. It
uses Mises plasticity condition with no hardening and under small strain only.
The model description and parameters are summarized in table 6.

9



Description Perfectly plastic material with Mises condition
Record Format Steel1 num(in) # d(rn) # E(rn) # n(rn) # tAlpha(rn) #

Ry(rn) #
Parameters - num material model number

- d material density
- E Young modulus
- n Poisson ratio
- tAlpha thermal dilatation coefficient
- Ry uniaxial yield stress

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat, 2dPlateLayer,
2dBeamLayer, 3dShellLayer 3dBeam, PlaneStressRot

Table 6: Perfectly plastic material with Mises condition – summary.

1.2.4 Composite plasticity model for masonry

Masonry is a composite material made of bricks and mortar. Nonlinear behavior
of both components should be considered to obtain a realistic model able to de-
scribe cracking, slip, and crushing of the material. The model is based on paper
by Lourenco and Rots [6]. It is formulated on the basis of softening plasticity
for tension, shear, and compression (see fig.(1)). Numerical implementation is
based on modern algorithmic concepts such as implicit integration of the rate
equations and consistent tangent stiffness matrices.

Friction
    mode

mode

Tension
mode

Cap

Residual surfaceInitial surface

Intermediate
surface

τ

σ

Figure 1: Composite yield surface model for masonry

The approach used in this work is based on idea of concentrating all the dam-
age in the relatively weak joints and, if necessary, in potential tension cracks
in the bricks. The joint interface constitutive model should include all impor-
tant damage mechanisms. Here, the concept of interface elements is used. An
interface element allows to incorporate discontinuities in the displacement field
and its behavior is described in terms of a relation between the tractions and
relative displacement across the interface. In the present work, these quanti-
ties will be denoted as σ, generalized stress, and ε, generalized strain. For 2D
configuration, σ = {σ, τ}T and ε = {un, us}T , where σ and τ are the normal
and shear components of the traction interface vector and n and s subscripts
distinguish between normal and shear components of displacement vector. The
elastic response is characterized in terms of elastic constitutive matrix D as

σ = Dε (30)

10



h
h
h

h +h

m

m

m b

b

Interface elements (joints)

Continuum elements (brick)

Figure 2: Modeling strategy for masonry

For a 2D configuration D = diag{kn, ks}. The terms of the elastic stiffness
matrix can be obtained from the properties of both masonry and joints as

kn =
EbEm

tm(Eb − Em)
; ks =

GbGm
tm(Gb −Gm)

(31)

where Eb and Em are Young’s moduli, Gb and Gm shear moduli for brick and
mortar, and tm is the thickness of joint. One should note, that there is no contact
algorithm assumed between bricks, this means that the overlap of neighboring
units will be visible. On the other hand, the interface model includes a com-
pressive cap, where the compressive inelastic behavior of masonry is lumped.

Tension mode In the tension mode, the exponential softening law is assumed
(see fig.(3)). The yield function has the following form

f1(σ, κ1) = σ − ft(κ1) (32)

where the yield value ft is defined as

ft = ft0 exp

(
− ft0
GIf

κ1

)
(33)

The ft0 represents tensile strength of joint or interface; and GIf is mode-I frac-
ture energy. For the tension mode, the associated flow hypothesis is assumed.

Shear mode For the shear mode a Coulomb friction envelope is used. The
yield function has the form

f2(σ, κ2) = |τ |+ σ tanφ(κ2)− c(κ2) (34)

According to [6] the variations of friction angle φ and cohesion c are assumed
as

c = c0 exp

(
− c0
GIIf

κ2

)
(35)

tanφ = tanφ0 + (tanφr − tanφ0)

(
c0 − c
c0

)
(36)
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0 0.2 0.4
0

0.05

0.1

0.15

0.2

Figure 3: Tensile behavior of proposed model (ft = 0.2 MPa, GI
f =

0.018 N/mm)

where c0 is initial cohesion of joint, φ0 initial friction angle, φr residual friction
angle, and GIIf fracture energy in mode II failure. A non-associated plastic
potential g2 is considered as

g2 = |τ |+ σ tan Φ− c (37)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

σ=−1.0
σ=−0.5
σ=−0.1

Figure 4: Shear behavior of proposed model for different confinement levels in
MPa (c0 = 0.8 MPa, tanφ0 = 1.0, tanφr = 0.75, and GII

f = 0.05 N/mm)

Coupling of tension/shear modes The tension and Coulomb friction modes
are coupled with isotropic softening. This means that the percentage of soften-
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ing in the cohesion is assumed to be the same as on the tensile strength

κ̇1 = λ1 +
GIf
GIIf

c0
ft0

λ2; κ̇2 =
GIIf
GIf

ft0
c0
λ1 + λ2 (38)

This follows from (33) and (35). However, in the corner region, when both yield
surfaces are activated, such approach will lead to a non-acceptable penalty. For
this reason a quadratic combination is assumed

κ̇1 =

√√√√(λ1)2 +

(
GIf
GIIf

c0
ft0

λ2

)2

; κ̇2 =

√√√√(GIIf
GIf

ft0
c0
λ1

)2

+ (λ2)2 (39)

Cap mode For the cap mode, an ellipsoid interface model is used. The yield
condition is assumed as

f3(σ, κ3) = Cnnσ
2 + Cssτ

2 + Cnσ − σ̄2(κ3) (40)

where Cnn, Css, and Cn are material model parameters and σ̄ is yield value,
originally assumed in the following form of hardening/softening law [6]

σ̄1(κ3) = σ̄i + (σ̄p − σ̄i)

√
2κ3

κp
− κ2

3

κ2
p

; κ3 ∈ (0, κp)

σ̄2(κ3) = σ̄p + (σ̄m − σ̄p)
(
κ3 − κp
κm − κp

)2

; κ3 ∈ (κp, κm) (41)

σ̄3(κ3) = σ̄r + (σ̄m − σ̄r) exp

(
m
κ3 − κm
σ̄m − σ̄r

)
; κ3 ∈ (κm,∞)

with m = 2(σ̄m− σ̄p)/(κm−κp). The hardening/softening law (41) is shown in
fig.(5). Note that the curved diagram is a C1 continuous σ − κ3 relation. The
energy under the load-displacement diagram can be related to a “compressive
fracture energy”. The original hardening law (41.1) exhibits indefinite slope for
κ3 = 0, which can cause the problems with numerical implementation. This has
been overcomed by replacing this hardening law with parabolic equation given
by

σ̄1(κ3) = σ̄i − 2 ∗ (σ̄i − σ̄p) ∗
κ3

κp
+ (σ̄i − σ̄p)

κ3

κp
(42)

An associated flow and strain hardening hypothesis are being considered. This
yields

κ̇3 = λ3

√
(2Cnnσ + Cn) ∗ (2Cnnσ + Cn) + (2Cssτ) ∗ (2Cssτ) (43)

The model parameters are summarized in table 7. There is one algorithmic
issue, that follows from the model formulation. Since the cap mode harden-
ing/softening is not coupled to hardening/softening of shear and tension modes
the it may happen that when the cap and shear modes are activated, the re-
turn directions become parallel for both surfaces. This should be avoided by
adjusting the input parameters accordingly (one can modify dilatancy angle, for
example).
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Figure 5: Hardening/softening law for cap mode

Description Composite plasticity model for masonry
Record Format Masonry02 num(in) # d(rn) # E(rn) # n(rn) # ft0(rn) #

gfi(rn) # gfii(rn) # kn(rn) # ks(rn) # c0(rn) # tanfi0(rn) # tan-
fir(rn) # tanpsi(rn) # si(rn) # sp(rn) # sm(rn) # sr(rn) # kp(rn) #
km(rn) # kr(rn) # cnn(rn) # css(rn) # cn(rn) #

Parameters - num material model number
- d material density
- E Young modulus
- n Poisson ratio
- ft0 tensile strength
- gfi fracture energy for mode I
- gfii fracture energy for mode II
- kn joint elastic property
- ks joint elastic property
- c0 initial cohesion
- tanfi0 initial friction angle
- tanfir residual friction angle
- tanpsi dilatancy
- {si, sp, sm, sr} cap parameters {σ̄i, σ̄p, σ̄m, σ̄r}
- {kp, km,kr} cap parameters {κp, κm, κr}
- cnn,css,cn cap mode parametrs

Supported modes 2dInterface

Table 7: Composite model for masonry - summary.

1.2.5 Nonlinear elasto-plastic material model for concrete plates and
shells

Nonlinear elasto-plastic material model with hardening. Takes into account
uniaxial stress + transverse shear in concrete layers with transverse stirrups.
Can be used only for 2d plates and shells with layered cross section and together
with explicit integration method (stiffness matrix is not provided). The model
description and parameters are summarized in table 8.
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Description Nonlinear elasto-plastic material model for concrete plates
and shells

Record Format Concrete2 num(in) # d(rn) # E(rn) # n(rn) # SCCC(rn) #
SCCT(rn) # EPP(rn) # EPU(rn) # EOPU(rn) #
EOPP(rn) # SHEARTOL(rn) # IS PLASTIC FLOW(in) #
IFAD(in) # STIRR E(rn) # STIRR Ft(rn) #
STIRR A(rn) # STIRR TOL(rn) # STIRR EREF(rn) #
STIRR LAMBDA(rn) #

Parameters - num material model number
- d material density
- E Young modulus
- n Poisson ratio
- SCCC pressure strength
- SCCT tension strength
- EPP threshold effective plastic strain for softening in com-
pression
- EPU ultimate eff. plastic strain
- EOPP threshold volumetric plastic strain for softening in
tension
- EOPU ultimate volumetric plastic strain
- SHEARTOL threshold value of the relative shear defor-
mation (psi**2/eef) at which shear is considered in lay-
ers. For lower relative shear deformations the transverse
shear remains elastic decoupled from bending. default value
SHEARTOL = 0.01
- IS PLASTIC FLOW indicates that plastic flow (not de-
formation theory) is used in pressure
- IFAD State variables will not be updated, otherwise up-
date state variables
- STIRR E Young modulus of stirrups
- STIRR R stirrups uniaxial strength = elastic limit
- STIRR A stirrups area/unit length (beam) or /unit area
(shell)
- STIRR TOL stirrups tolerance of equilibrium in the z
direction (=0 no iteration)
- STIRR EREF stirrups reference strain rate for Peryzna’s
material
- STIRR LAMBDA coefficient for that material (stirrups)
- SHTIRR H isotropic hardening factor for stirrups

Supported modes 3dShellLayer, 2dPlateLayer

Table 8: Nonlinear elasto-plastic material model for concrete - summary.

1.3 Material models for tensile failure

1.3.1 Nonlinear elasto-plastic material model for concrete plates and
shells

The description can be found is section 1.2.5.
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1.3.2 Smeared rotating crack model

Implementation of smeared rotating crack model. Virgin material is modeled as
isotropic linear elastic material (described by Young modulus and Poisson ratio).
The onset of cracking begins, when principal stress reaches tensile strength.
Further behavior is then determined by softening law, governed by principle of
preserving of fracture energy Gf . For large elements, the tension strength can
be artificially reduced to preserve fracture energy. Multiple cracks are allowed.
The elastic unloading and reloading is assumed. In compression regime, this
model correspond to isotropic linear elastic material. The model description
and parameters are summarized in table 9.

Description Rotating crack model for concrete
Record Format Concrete3 d(rn) # E(rn) # n(rn) # Gf(rn) # Ft(rn) #

exp soft(in) # tAlpha(rn) #
Parameters - num material model number

- d material density
- E Young modulus
- n Poisson ratio
- Gf fracture energy
- Ft tension strength
- exp soft determines the type of softening (0 = exponential,
1 = linear)
- tAlpha thermal dilatation coefficient

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat, 2dPlateLayer,
2dBeamLayer, 3dShellLayer

Table 9: Rotating crack model for concrete - summary.

1.3.3 Smeared rotating crack model with transition to scalar damage
- linear softening

Implementation of smeared rotating crack model with transition to scalar dam-
age with linear softening law. Improves the classical rotating model (see sec-
tion 1.3.2) by introducing the transition to scalar damage model in later stages
of tension softening.

Traditional smeared-crack models for concrete fracture are known to suffer
by stress locking (meaning here spurious stress transfer across widely opening
cracks), mesh-induced directional bias, and possible instability at late stages
of the loading process. The combined model keeps the anisotropic character
of the rotating crack but it does not transfer spurious stresses across widely
open cracks. The new model with transition to scalar damage (RC-SD) keeps
the anisotropic character of the RCM but it does not transfer spurious stresses
across widely open cracks.

Virgin material is modeled as isotropic linear elastic material (described
by Young modulus and Poisson ratio). The onset of cracking begins, when
principal stress reaches tensile strength. Further behavior is then determined
by linear softening law, governed by principle of preserving of fracture energy
Gf . For large elements, the tension strength can be artificially reduced to
preserve fracture energy. The transition to scalar damage model takes place,
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when the softening stress reaches the specified limit. Multiple cracks are allowed.
The elastic unloading and reloading is assumed. In compression regime, this
model correspond to isotropic linear elastic material. The model description
and parameters are summarized in table 10.

Description Smeared rotating crack model with transition to scalar
damage - linear softening

Record Format RCSD d(rn) # E(rn) # n(rn) # Gf(rn) # Ft(rn) # sdtransi-
tioncoeff(rn) # tAlpha(rn) #

Parameters - num material model number
- d material density
- E Young modulus
- n Poisson ratio
- Gf fracture energy
- Ft tension strength
- sdtransitioncoeff determines the transition from RC to SD
model. Transition takes plase when ratio of current soften-
ing stress to tension strength is less than sdtransitioncoeff
value
- tAlpha thermal dilatation coefficient

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat, 2dPlateLayer,
2dBeamLayer, 3dShellLayer

Table 10: RC-SD model for concrete - summary.

1.3.4 Smeared rotating crack model with transition to scalar damage
- exponential softening

Implementation of smeared rotating crack model with transition to scalar dam-
age with exponential softening law. The description and model summary (ta-
ble 11) are the same as for the RC-SD model with linear softening law (see
section 1.3.3).

Description Smeared rotating crack model with transition to scalar
damage - exponential softening

Record Format RCSDE d(rn) # E(rn) # n(rn) # Gf(rn) # Ft(rn) # sdtransi-
tioncoeff(rn) # tAlpha(rn) #

Table 11: RC-SD model for concrete - summary.

1.3.5 Nonlocal smeared rotating crack model with transition to scalar
damage

Implementation of nonlocal version of smeared rotating crack model with tran-
sition to scalar damage. Improves the classical rotating model (see section 1.3.2)
by introducing the transition to scalar damage model in later stages of tension
softening. The improved RC-SD (see section 1.3.3) is further extended to a
nonlocal formulation, which not only acts as a powerful localization limiter but
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also alleviates mesh-induced directional bias. A special type of material insta-
bility arising due to negative shear stiffness terms in the rotating crack model is
resolved by switching to SD mode. A bell shaped nonlocal averaging function
is used.

Virgin material is modeled as isotropic linear elastic material (described
by Young modulus and Poisson ratio). The onset of cracking begins, when
principal stress reaches tensile strength. Further behavior is then determined
by exponential softening law.

The transition to scalar damage model takes place, when the softening stress
reaches the specified limit or when the loss of material stability due to negative
shear stiffness terms that may arise in the standard RCM formulation, which
takes place when the ratio of minimal shear coefficient in stiffness to bulk ma-
terial shear modulus reaches the limit.

Multiple cracks are allowed. The elastic unloading and reloading is assumed.
In compression regime, this model correspond to isotropic linear elastic material.
The model description and parameters are summarized in table 12.

Description Nonlocal smeared rotating crack model with transition to
scalar damage for concrete

Record Format RCSDNL d(rn) # E(rn) # n(rn) # Ft(rn) # sdtransitionco-
eff(rn) # sdtransitioncoeff2(rn) # r(rn) # tAlpha(rn) #

Parameters - num material model number
- d material density
- E Young modulus
- n Poisson ratio
- ef deformation corresponding to fully open crack
- Ft tension strength
- sdtransitioncoeff determines the transition from RC to SD
model. Transition takes place when ratio of current soften-
ing stress to tension strength is less than sdtransitioncoeff
value
- sdtransitioncoeff2 determines the transition from RC to
SD model. Transition takes place when ratio of current
minimal shear stiffness term to virgin shear modulus is less
than sdtransitioncoeff2 value
- r parameter specifying the width of nonlocal averaging
zone
- tAlpha thermal dilatation coefficient
- regionMap map indicating the regions (currently region is
characterized by cross section number) to skip for nonlo-
cal avaraging. The elements and corresponding IP are not
taken into account in nonlocal averaging process if corre-
sponding regionMap value is nonzero.

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat, 2dPlateLayer,
2dBeamLayer, 3dShellLayer

Table 12: RC-SD-NL model for concrete - summary.
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1.3.6 Isotropic damage model for tensile failure

This isotropic damage model assumes that the stiffness degradation is isotropic,
i.e., stiffness moduli corresponding to different directions decrease proportionally
and independently of the loading direction. The damaged stiffness tensor is
expressed as D = (1−ω)De where ω is a scalar damage variable and De is the
elastic stiffness tensor. The damage evolution law is postulated in an explicit
form, relating the damage variable ω to the largest previously reached equivalent
strain level, κ.

The equivalent strain, ε̃, is a scalar measure derived from the strain tensor.
The choice of the specific expression for the equivalent strain affects the shape
of the elastic domain in the strain space and plays a similar role to the choice
of a yield condition in plasticity. The following definitions of equivalent strain
are currently supported:

• Mazars (1984) definition based on norm of positive part of strain:

ε̃ =

√√√√ 3∑
I=1

〈εI〉2

where 〈εI〉 are positive parts of principal values of the strain tensor ε.

• Definition derived from the Rankine criterion of maximum principal
stress:

ε̃ =
1

E

√√√√ 3∑
I=1

〈σ̄I〉2

where 〈σ̄I〉 are the positive parts of principal values of the effective stress
tensor σ̄ = De : ε.

• Energy norm scaled by Young’s modulus to obtain a strain-like quantity:

ε̃ =

√
ε : De : ε

E

• Modified Mises definition, proposed by de Vree et al. (1995):

ε̃ =
(k − 1)I1ε
2k(1− 2ν)

+
1

2k

√
(k − 1)2

(1− 2ν)2
I2
1ε +

12kJ2ε

(1 + ν)2

where

I1ε =

3∑
I=1

εI

is the first strain invariant (trace of the strain tensor),

J2ε =
1

2

3∑
I=1

ε2
I −

1

6
I2
1ε

is the second deviatoric strain invariant, and k is a model parameter that
corresponds to the ratio between the uniaxial compressive strength fc and
uniaxial tensile strength ft.
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Note that all these definitions are based on the three-dimensional description
of strain (and stress). If they are used in a reduced problem, the strain com-
ponents that are not explicitly provided by the finite element approximation
are computed from the underlying assumptions and used in the evaluation of
equivalent strain. For instance, in a plane-stress analysis, the out-of-plane com-
ponent of normal strain is calculated from the assumption of zero out-of-plane
normal stress (using standard Hooke’s law).

Since the growth of damage usually leads to softening and may induce lo-
calization of the dissipative process, attention should be paid to proper regu-
larization. The most efficient approach is based on a nonlocal formulation; see
Section 1.3.7. If the model is kept local, the damage law should be adjusted
according to the element size, in the spirit of the crack-band approach. When
done properly, this ensures a correct dissipation of energy in a localized band
of cracking elements, corresponding to the fracture energy of the material. For
various numerical studies, it may be useful to specify the parameters of the
damage law directly, independently of the element size. One should be aware
that in this case the model would exhibit pathological sensitivity to the size of
finite elements if the mesh is changed.

The following damage laws are currently implemented:

• Cohesive crack with exponential softening postulates a relation be-
tween the normal stress σ transmitted by the crack and the crack opening
w in the form

σ = ft exp

(
− w

wf

)
Here, ft is the tensile strength and wf is a parameter with the dimension
of length (crack opening), which controls the ductility of the material.
In fact, wf = Gf/ft where Gf is the mode-I fracture energy. In the
context of the crack-band approach, the crack opening w corresponds to
the inelastic (cracking) strain εc multiplied by the effective thickness h of
the crack band. The effective thickness h is estimated by projecting the
finite element onto the direction of the maximum principal strain (and
stress) at the onset of damage. The inelastic strain εc is the difference
between the total strain ε and the elastic strain σ/E. For the damage
model we obtain

εc = ε− σ

E
= ε− (1− ω)ε = ωε

and thus w = hεc = hωε. Substituting this into the cohesive law and com-
bining with the stress-strain law for the damage model, we get a nonlinear
equation

(1− ω)Eε = ft exp

(
−hωε
wf

)
For a given strain ε, the corresponding damage variable ω can be solved
from this equation by Newton iterations. It can be shown that the solution
exists and is unique for every ε ≥ ε0 provided that the element size h
does not exceed the limit size hmax = wf/ε0. For larger elements, a local
snapback in the stress-strain diagram would occur, which is not admissible.
In terms of the material properties, hmax can be expressed as EGf/f

2
t ,

which is related to Irwin’s characteristic length.
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The derivation has been performed for monotonic loading and uniaxial
tension. Under general conditions, ε is replaced by the internal variable
κ, which represents the maximum previously reached level of equivalent
strain.

In the list of input variables, the tensile strength ft is not specified directly
but through the corresponding strain at peak stress, ε0 = ft/E, denoted by
keyword e0. Another input parameter is the characteristic crack opening
wf , denoted by keyword wf.

• Cohesive crack with linear softening is based on the same correspon-
dence between crack opening and inelastic strain, but the cohesive law is
assumed to have a simpler linear form

σ = ft

(
1− w

wf

)
The relation between damage and strain can then be described explicitly
by the formula

ω =
1− ε0

ε

1− hε0

wf

and no iteration is needed for damage evaluation. Parameter wf , denoted
again by keyword wf, has now the meaning of crack opening at complete
failure (zero cohesive stress) and is related to fracture energy by a modified
formula wf = 2Gf/ft. The expression for maximum element size, hmax =
wf/ε0, remains the same as for cohesive law with exponential softening,
but in terms of the material properties it is now translated as hmax =
2EGf/f

2
t .

• Linear softening stress-strain law works directly with strain and does
not make any adjustment for the element size. The specified parameters ε0

and εf , denoted by keywords e0 and ef, have the meaning of (equivalent)
strain at peak stress and at complete failure. The linear relation between
stress and strain on the softening branch is obtained with the damage law

ω =
εf

εf − ε0

(
1− ε0

ε

)
Again, to cover general conditions, ε is replaced by κ.

• Exponential softening stress-strain law also uses two parameters ε0

and εf , denoted by keywords e0 and ef, but leads to a modified dependence
of damage on strain:

ω = 1− ε0

ε
exp

(
− ε− ε0

εf − ε0

)
• Mazars stress-strain law uses three parameters, ε0, At and Bt, denoted

by keywords e0, At and Bt, and the dependence of damage on strain is
given by

ω = 1− (1−At)ε0

ε
−At exp (Bt(ε− ε0))
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• Smooth exponential stress-strain law uses two parameters, ε0 and
Md, denoted by keywords e0 and md, and the dependence of damage on
strain is given by

ω = 1− exp

(
−
(
ε

ε0

)Md
)

This leads to a stress-strain curve that immediately deviates from linearity
(has no elastic part) and smoothly changes from hardening to softening,
with tensile strength

ft = Eε0 (eMd)
−1/Md

Note that parameter damlaw determines which type of damage law should be
used, but the adjustment for element size is done only if parameter wf is specified
for damlaw=0 or damlaw=1. For other values of damlaw, or if parameter ef is
specified instead of wf, the stress-strain curve does not depend on element size
and the model would exhibit pathological sensitivity to the mesh size. These
cases are intended to be used in combination with a nonlocal formulation.

The model parameters are summarized in Table 13.

1.3.7 Nonlocal isotropic damage model for tensile failure

Nonlocal version of isotropic damage model from Section 1.3.6. The nonlocal
averaging acts as a powerful localization limiter. In the standard version of
the model, damage is driven by the nonlocal equivalent strain ε̄, defined as a
weighted average of the local equivalent strain:

ε̄(x) =

∫
V

α(x, ξ)ε̃(ξ) dξ

In the “undernonlocal” formulation, the damage-driving variable is a combi-
nation of local and nonlocal equivalent strain, mε̄ + (1 − m)ε̃, where m is a
parameter between 0 and 1. (If m > 1, the formulation is called “overnonlocal”;
this case is useful for nonlocal plasticity but not for nonlocal damage.)

Instead of averaging the equivalent strain, one can average the compliance
variable γ, directly related to damage according to the formula γ = ω/(1− ω).

The weight function α contains a certain parameter with the dimension of
length, which is in general called the characteristic length. Its specific meaning
depends on the type of weight function. The following functions are currently
supported:

• Truncated quartic spline, also called the bell-shaped function,

α0(s) =

〈
1− s2

R2

〉2

where R is the interaction radius (characteristic length) and s is the dis-
tance between the interacting points. This function is exactly zero for
s ≥ R, i.e., it has a bounded support.

• Gaussian function

α0(s) = exp

(
− s

2

R2

)
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which is theoretically nonzero for an arbitrary large s and thus has an
unbounded support. However, in the numerical implementation the value
of α0 is considered as zero for s > 2.5R.

• Exponential function

α0(s) = exp
(
− s
R

)
which also has an unbounded support, but is considered as zero for s > 6R.
This function is sometimes called the Green function, because in 1D it
corresponds to the Green function of the Helmholtz-like equation used by
implicit gradient approaches.

• Piecewise constant function

α0(s) =

{
1 if s ≤ R
0 if s > R

which corresponds to uniform averaging over a segment, disc or ball of
radius R.

• Function that is constant over the finite element in which point x is lo-
cated, and is zero everywhere else. Of course, this is not a physically
objective definition of nonlocal averaging, since it depends on the dis-
cretization. However, this kind of averaging was proposed in a boundary
layer by Prof. Bažant and was implemented into OOFEM for testing pur-
poses.

The above functions depend only on the distance s between the interacting
points and are not normalized. If the normalizing condition∫

V∞

α(x, ξ) dξ = 1

is imposed in an infinite body V∞, it is sufficient to scale α0 by a constant and
set

α(x, ξ) =
α0(‖x− ξ‖)

Vr∞

where

Vr∞ =

∫
V∞

α0(‖ξ‖) dξ

Constant Vr∞ can be computed analytically depending on the specific type of
weight function and the number of spatial dimensions in which the analysis is
performed. Since the factor 1/Vr∞ can be incorporated directly in the definition
of α0, this case is referred to as “no scaling”.

If the body of interest is finite (or even semi-infinite), the averaging integral
can be performed only over the domain filled by the body, and the volume
contributing to the nonlocal average at a point x near the boundary is reduced
as compared to points x far from the boundary or in an infinite body. To make
sure that the normalizing condition∫

V

α(x, ξ) dξ = 1
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holds for the specific domain V , different approaches can be used. The standard
approach defines the nonlocal weight function as

α(x, ξ) =
α0(‖x− ξ‖)

Vr(x)

where

Vr(x) =

∫
V

α0(‖x− ξ‖) dξ

According to the approach suggested by Borino, the weight function is defined
as

α(x, ξ) =
α0(‖x− ξ‖)

Vr∞
+

(
1− Vr(x)

Vr∞

)
δ(x− ξ)

where δ is the Dirac distribution. One can also say that the nonlocal variable
is evaluated as

ε̄(x) =
1

Vr∞

∫
V

α0(‖x− ξ‖)ε̃(ξ) dξ +

(
1− Vr(x)

Vr∞

)
ε̃(x)

The term on the right-hand side after the integral is a multiple of the local
variable, and so it can be referred to as the local complement.

The model parameters are summarized in Tables 14 and 15.
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Description Isotropic damage model for concrete in tension
Record Format idm1 (in) # d(rn) # E(rn) # n(rn) # [tAlpha(rn) #] [equivs-

traintype(in) #] [k(rn) #] [damlaw(in) #] e0(rn) # [wf(rn) #]
[ef(rn) #] [At(rn) #] [Bt(rn) #] [md(rn) #] [maxOmega(rn) #]

Parameters - material number
- d material density
- E Young’s modulus
- n Poisson’s ratio
- tAlpha thermal expansion coefficient
- equivstraintype allows to choose from different definitions
of equivalent strain:

0 - Mazars (default)

1 - Rankine

2 - scaled energy norm

3 - modified Mises

- k ratio between uniaxial compressive and tensile strength,
needed only if equivstraintype=3, default value 1
- damlaw allows to choose from different damage laws:

0 - exponential softening (default) with parameters e0
and wf | ef

1 - linear softening with parameters e0 and wf | ef

2 - bilinear softening (not implemented yet)

3 - Hordijk softening (not implemented yet)

4 - Mazars damage law with parameters At and Bt

5 - smooth stress-strain curve with parameters e0 and md

- e0 strain at peak stress (for damage laws 0,1,2,3), limit
elastic strain (for damage law 4), characteristic strain (for
damage law 5)
- wf parameter controling ductility, has the meaning of crack
opening (for damage laws 0 and 1)
- ef parameter controling ductility, has the meaning of
strain (for damage laws 0 and 1)
- At parameter of Mazars damage law, used only by law 4
- Bt parameter of Mazars damage law, used only by law 4
- md exponent, used only by damage law 5, default value 1
- maxOmega maximum damage, used for convergence im-
provement (its value is between 0 and 0.999999 (default),
and it affects only the secant stiffness but not the stress)

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat
Features Adaptivity support

Table 13: Isotropic damage model for tensile failure – summary.
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Description Nonlocal isotropic damage model for concrete in tension
Record Format idmnl1 (in) # d(rn) # E(rn) # n(rn) # [tAlpha(rn) #] [equivs-

traintype(in) #] [k(rn) #] [damlaw(in) #] e0(rn) # [ef(rn) #]
[At(rn) #] [Bt(rn) #] [md(rn) #] r(rn) # [regionMap(ia) #]
[wft(in) #] [averagingType(in) #] [m(rn) #] [scaling(in) #] [av-
eragedVar(in) #] [maxOmega(rn) #]

Parameters - material number
- d material density
- E Young’s modulus
- n Poisson’s ratio
- tAlpha thermal expansion coefficient
- equivstraintype allows to choose from different definitions
of equivalent strain, same as for the local model; see Table
13
- k ratio between uniaxial compressive and tensile strength,
needed only if equivstraintype=3, default value 1
- damlaw allows to choose from different damage laws, same
as for the local model; see Table 13 (note that parameter
wf cannot be used for the nonlocal model)
- e0 strain at peak stress (for damage laws 0,1,2,3), limit
elastic strain (for damage law 4), characteristic strain (for
damage law 5)
- ef strain parameter controling ductility, has the meaning
of strain (for damage laws 0 and 1), the tangent modulus
just after the peak is Et = −ft/(εf − ε0)
- At parameter of Mazars damage law, used only by law 4
- Bt parameter of Mazars damage law, used only by law 4
- md exponent, used only by damage law 5, default value 1
- r nonlocal characteristic length R; its meaning depends
on the type of weight function (e.g., interaction radius for
the quartic spline)
- regionMap map indicating the regions (currently region is
characterized by cross section number) to skip for nonlo-
cal avaraging. The elements and corresponding IP are not
taken into account in nonlocal averaging process if corre-
sponding regionMap value is nonzero.
- wft selects the type of nonlocal weight function:

1 - default, quartic spline (bell-shaped function with
bounded support)

2 - Gaussian function

3 - exponential function (Green function in 1D)

4 - uniform averaging up to distance R

5 - uniform averaging over one finite element

— continued in Table 15 —

Table 14: Nonlocal isotropic damage model for tensile failure – summary.
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Description Nonlocal isotropic damage model for concrete in tension
- averagingType activates a special averaging procedure, de-
fault value 0 does not change anything, value 1 means av-
eraging over one finite element (equivalent to wft=5, but
kept here for compatibility with previous version)
- m multiplier for overnonlocal or undernonlocal formula-
tion, which use m-times the local variable plus (1−m)-times
the nonlocal variable, default value 1
- scaling selects the type of scaling of the weight function
(e.g. near a boundary):

1 - default, standard scaling with integral of weight func-
tion in the denominator

2 - no scaling (the weight function normalized in an infi-
nite body is used even near a boundary)

3 - Borino scaling (local complement)

- averagedVar selects the variable to be averaged, default
value 1 corresponds to equivalent strain, value 2 activates
averaging of compliance variable
- maxOmega maximum damage, used for convergence im-
provement (its value is between 0 and 0.999999 (default),
and it affects only the secant stiffness but not the stress)

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat
Features Adaptivity support

Table 15: Nonlocal isotropic damage model for tensile failure – continued.
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1.3.8 MDM - Anisotropic damage model

Local formulation The concept of isotropic damage is appropriate for ma-
terials weakened by voids, but if the physical source of damage is the initiation
and propagation of microcracks, isotropic stiffness degradation can be consid-
ered only as a first rough approximation. More refined damage models take
into account the highly oriented nature of cracking, which is reflected by the
anisotropic character of the damaged stiffness or compliance matrices.

A number of anisotropic damage formulations have been proposed in the lit-
erature. Here we use a model outlined by M. Jirásek in [5], which is based on the
principle of energy equivalence and on the construction of the inverse integrity
tensor by integration of a scalar over all spatial directions. Since the model uses
certain concepts from the microplane theory, it is called the microplane-based
damage model (MDM).

The general structure of the MDM model is schematically shown in Fig.
6 and the basic equations are summarized in Table 16. Here, ε and σ are
the (nominal) second-order strain and stress tensors with components εij and
σij ; e and s are first-order strain and stress tensors with components ei and
si, which characterize the strain and stress on “microplanes” of different ori-
entations given by a unit vector n with components ni; ψ is a dimensionless
compliance parameter that is a scalar but can have different values for different
directions n; the symbol δ denotes a virtual quantity; and a sumperimposed
tilde denotes an effective quantity, which is supposed to characterize the state
of the intact material between defects such as microcracks or voids.

Table 16: Basic equations of microplane-based anisotropic damage model

ẽ = ε̃ · n sT = ψs s = σ · n

σ̃ : δε̃ =
3

2π

∫
Ω

sT · δẽ dΩ δs · e = dsT · ẽ δσ : ε =
3

2π

∫
Ω

δs · edΩ

σ̃ =
3

2π

∫
Ω

(sT ⊗ n)sym dΩ e = ψẽ ε =
3

2π

∫
Ω
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Figure 6: Structure of microplane-based anisotropic damage model

Combining the basic equations, it is possible to show that the components
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of the damaged material compliance tensor are given by

Cijkl = MpqijMrsklC
e
pqrs (44)

where Cepqrs are the components of the elastic material compliance tensor,

Mijkl = 1
4 (ψikδjl + ψilδjk + ψjkδil + ψjlδik) (45)

are the components of the so-called damage effect tensor, and

ψij =
3

2π

∫
Ω

ψ ninj dΩ (46)

are the components of the second-order inverse integrity tensor. The integra-
tion domain Ω is the unit hemisphere. In practice, the integral over the unit
hemisphere is evaluated by summing the contribution from a finite number of
directions, according to one of the numerical integration schemes that are used
by microplane models.

The scalar variable ψ characterizes the relative compliance in the direction
given by the vector n. If ψ is the same in all directions, the inverse integrity
tensor evaluated from (46) is equal to the unit second-order tensor (Kronecker
delta) multiplied by ψ, the damage effect tensor evaluated from (45) is equal
to the symmetric fourth-order unit tensor multiplied by ψ, and the damaged
material compliance tensor evaluated from (44) is the elastic compliance tensor
multiplied by ψ2. The factor multiplying the elastic compliance tensor in the
isotropic damage model is 1/(1−ω), and so ψ corresponds to 1/

√
1− ω. In the

initial undamaged state, ψ = 1 in all directions. The evolution of ψ is governed
by the history of the projected strain components. In the simplest case, ψ is
driven by the normal strain eN = εijninj . Analogy with the isotropic damage
model leads to the damage law

ψ = f(κ) (47)

and loading-unloading conditions

g(eN , κ) ≡ eN − κ ≤ 0, κ̇ ≥ 0, κ̇g(eN , κ) = 0 (48)

in which κ is a history variable that represents the maximum level of normal
strain in the given direction ever reached in the previous history of the mate-
rial. An appropriate modification of the exponential softening law leads to the
damage law

f(κ) =


1 if κ ≤ e0√

κ
e0

exp
(
κ−e0
ef−e0

)
if κ > e0

(49)

where e0 is a parameter controlling the elastic limit, and ef > e0 is another
parameter controlling ductility. Note that softening in a limited number of di-
rections does not necessarily lead to softening on the macroscopic level, because
the response in the other directions remains elastic. Therefore, e0 corresponds
to the elastic limit but not to the state at peak stress.

If the MDM model is used in its basic form described above, the compres-
sive strength turns out to depend on the Poisson ratio and, in applications to
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concrete, its value is too low compared to the tensile strength. The model is de-
signed primarily for tensile-dominated failure, so the low compressive strength
is not considered as a major drawback. Still, it is desirable to introduce a
modification that would prevent spurious compressive failure in problems where
moderate compressive stresses appear. The desired effect is achieved by redefin-
ing the projected strain eN as

eN =
εijninj

1− m

Ee0
σkk

(50)

where m is a nonnegative parameter that controls the sensitivity to the mean
stress, σkk is the trace of the stress tensor, and the normalizing factor Ee0 is
introduced in order to render the parameter m dimensionless. Under compres-
sive stress states (characterized by σkk < 0), the denominator in (50) is larger
than 1, and the projected strain is reduced, which also leads to a reduction of
damage. A typical recommended value of parameter m is 0.05.

Nonlocal formulation Nonlocal formulation of the MDM model is based
on the averaging of the inverse integrity tensor. This roughly corresponds to
the nonlocal isotropic damage model with averaging of the compliance variable
γ = ω/(1 − ω), which does not cause any spurious locking effects. In equation
(45) for the evaluation of the damage effect tensor, the inverse integrity tensor
is replaced by its weighted average with components

ψ̄ij(x) =

∫
V

α(x, ξ)ψij(ξ)dξ (51)

By fitting a wide range of numerical results, it has been found that the
parameters of the nonlocal MDM model can be estimated from the measurable
material properties using the formulas

λf =
EGf
Rf2

t

(52)

λ =
λf

1.47− 0.0014λf
(53)

e0 =
ft

(1−m)E(1.56 + 0.006λ)
(54)

ef = e0[1 + (1−m)λ] (55)

where E is Young’s modulus, Gf is the fracture energy, ft is the uniaxial tensile
strength, m is the compressive correction factor, typically chosen as m = 0.05,
and R is the radius of nonlocal interaction reflecting the internal length of the
material.

Input Record The model description and parameters are summarized in ta-
ble 17.
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Description MDM Anisotropic damage model
Common parameters

Record Format mdm d(rn) # nmp(ins) # talpha(rn) # parmd(rn) # non-
loc(in) # formulation(in) # mode(in) #

Parameters -num material model number
- D material density
- nmp number of microplanes used for hemisphere integra-
tion, supported values are 21,28, and 61
- talpha thermal dillatation coeff
- parmd
- nonloc
- formulation
- mode

Nonlocal variant I
Additional params r(rn) # efp(rn) # ep(rn) #

-r nonlocal interaction radius
-efp εfp is a model parameter that controls the post-peak
slope εfp =εf − ε0, where εf is strain at zero stress level.
-ep max effective strain at peak ε0

Nonlocal variant II
Additional params r(rn) # gf(rn) # ft(rn) #

-r nonlocal intraction radius
-gf fracture energy
-ft tensile strength

Local variant I
Additional params efp(rn) # ep(rn) #

-efp εfp is a model parameter that controls the post-peak
slope εfp =εf − ε0, where εf is strain at zero stress level.
-ep max effective strain at peak ε0

Local variant II
Additional params gf(rn) # ep(rn) #

-gf fracture energy
-ep max effective strain at peak ε0

Supported modes 3dMat, PlaneStress
Features Adaptivity support

Table 17: MDM model - summary.
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1.4 Material models specific to concrete

1.4.1 Mazars damage model for concrete

This isotropic damage model assumes that the stiffness degradation is isotropic,
i.e., stiffness moduli corresponding to different directions decrease proportionally
and independently of direction of loading. It introduces two damage parameters
ωt and ωc that are computed from the same equivalent strain using two different
damage functions gt and gc. The gt is identified from the uniaxial tension tests,
while gc from compressive test. The damage parameter for general stress states
ω is obtained as a linear combination of ωt and ωc: ω = αtgt + αcgc, where the
coefficients αt and αc take into account the character of the stress state. The
damaged stiffness tensor is expressed as D = (1−ω)De. Damage evolution law
is postulated in an explicit form, relating damage parameter and scalar measure
of largest reached strain level in material, taking into account the principle of
preserving of fracture energy Gf . The equivalent strain, i.e., a scalar measure
of the strain level is defined as norm from positive principal strains. The model
description and parameters are summarized in table 18.

1.4.2 Nonlocal Mazars damage model for concrete

The nonlocal variant of Mazars damage model for concrete. Model based on
nonlocal averaging of equivalent strain. The nonlocal averaging acts as a pow-
erful localization limiter. The bell-shaped nonlocal averaging function is used.
The model description and parameters are summarized in table 19.

1.4.3 CebFip78 model for concrete creep with aging

Implementation of aging viscoelastic model for concrete creep according to the
CEB-FIP Model Code. The model parameters are summarized in table 20.

1.4.4 Double-power law model for concrete creep with aging

Implementation of aging viscoelastic model for concrete creep with compliance
function given by the double-power law. The model parameters are summarized
in table 21.

1.4.5 B3 model for concrete creep with aging

Model B3 is an aging viscoelastic model for concrete creep and shrinkage, de-
veloped by Prof. Bažant and coworkers. In OOFEM it is implemented in two
different forms. Material “B3mat” uses an approximation by an aging Maxwell
chain. This is an older version, kept in OOFEM for compatibility. A more
recent implementation is referred to as “B3solidmat” and exploits a non-aging
Kelvin chain combined with the solidification theory. It is also extended to the
so-called microprestress solidification theory (MPS), which takes into account
the effects of variable humidity (and in the future also of variable temperature)
on creep. The underlying rheological chain consists of three major components.
The solidifying Kelvin chain represents short-term creep; it is serially coupled
with a non-aging elastic spring that reflects instantaneous deformation. Long-
term creep is captured by an aging dashpot with viscosity dependent on the

32



Description Mazars damage model for concrete
Record Format mazarsmodel d(rn) # E(rn) # n(rn) # e0(rn) # ac(rn) #

[bc(rn) #] [beta(rn) #] at(rn) # [ bt(rn) #] [hreft(rn) #]
[hrefc(rn) #] [version(in) #] [tAlpha(rn) #] [equivstrain-
type(in) #] [maxOmega(rn) #]

Parameters - num material model number
- d material density
- E Young modulus
- n Poisson ratio
- e0 max effective strain at peak
- ac,bc material parameters related to the shape of uniaxial
compression curve (A sample set used by Saouridis is Ac =
1.34, Bc = 2537
- beta coefficient reducing the effect of damage under re-
sponse under shear. Default value set to 1.06
- at, [bt] material parameters related to the shape of uniaxial
tension curve. Meaning dependent on version parameter.
- hreft, hrefc reference characteristic lengths for tension and
compression. The material parameters are specified for ele-
ment with these characteristic lengths. The current element
then will have the same COD (Crack Opening Displace-
ment) as reference one.
- version Model variant. if 0 specified, the original form
gt = 1.0 − (1.0 − At) ∗ ε0/κ − At ∗ exp(−Bt ∗ (κ − ε0));
of tension damage evolution law is used, if equal 1, the
modified law used which asymptotically tends to zero gt =
1.0− (ε0/κ) ∗ exp((ε0 − κ)/At)
- tAlpha thermal dilatation coefficient
- equivstraintype see Table 13
- maxOmega limit maximum damage, use for convergency
improvement

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat

Table 18: Mazars damage model – summary.

microprestress, the evolution of which is affected by changes of temperature
and humidity.

The model description and parameters are summarized in table 22 for “B3mat”
and in table 23 for “B3solidmat”. Since some model parameters are determined
from the composition and strength using empirical formulae, it is necessary to
use the specified units (e.g. compressive strength always in MPa, irrespectively
of the units used in the simulation for stress).
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Description Nonlocal Mazars damage model for concrete
Record Format mazarsmodelnl r(rn) # E(rn) # n(rn) # e0(rn) # ac(rn) #

bc(rn) # beta(rn) # version(in) # at(rn) # [ bt(rn) #] r(rn) #
tAlpha(rn) #

Parameters - num material model number
- d material density
- E Young modulus
- n Poisson ratio
- maxOmega limit maximum damage, use for convergency
improvement
- tAlpha thermal dilatation coefficient
- version Model variant. if 0 specified, the original form
gt = 1.0 − (1.0 − At) ∗ ε0/κ − At ∗ exp(−Bt ∗ (κ − ε0));
of tension damage evolution law is used, if equal 1, the
modified law used which asymptotically tends to zero gt =
1.0− (ε0/κ) ∗ exp((ε0 − κ)/At)
- ac,bc material parameters related to the shape of uniaxial
compression curve (A sample set used by Saouridis is Ac =
1.34, Bc = 2537
- at, [bt] material parameters related to the shape of uniaxial
tension curve. Meaning dependent on version parameter.
- beta coefficient reducing the effect of damage under re-
sponse under shear. Default value set to 1.06
- r parameter specifying the width of nonlocal averaging
zone

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat

Table 19: Nonlocal Mazars damage model – summary.

Description CebFip78 model for concrete creep with aging
Record Format CebFip78 n(rn) # relMatAge(rn) # E28(rn) # fibf(rn) #

kap a(rn) # kap c(rn) # kap tt(rn) # u(rn) #
Parameters - num material model number

- E28 Young modulus at age of 28 days [MPa]
- n Poisson ratio
- fibf basic creep coefficient
- kap a coefficient of hydrometric conditions
- kap c coefficient of type of cement
- kap tt coeficient of temperature effects
- u surface imposed to environment [mm2]; temporary here;
should be in crosssection level
- relmatage relative material age

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat, 2dPlate-
Layer,2dBeamLayer, 3dShellLayer

Table 20: CebFip78 material model – summary.
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Description Double-power law model for concrete creep with aging
Record Format doublepowerlaw n(rn) # relMatAge(rn) # E28(rn) #

fi1(rn) # m(rn) # n(rn) # alpha(rn) #
Parameters - num material model number

- E28 Young modulus at age of 28 days [MPa]
- n Poisson ratio
- fibf basic creep coefficient
- m coefficient
- n coefficient
- alpha coeficient
- relmatage relative material age

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat, 2dPlate-
Layer,2dBeamLayer, 3dShellLayer

Table 21: Double-power law model – summary.

Description B3 material model for concrete aging
Record Format B3mat n(rn) # relMatAge(rn) # fc(rn) # cc(rn) # w/c(rn) #

a/c(rn) # t0(rn) # alpha1(rn) # alpha2(rn) # ks(rn) # hum(rn) #
vs(rn) # noshrinkage(in) #

Parameters - num material model number
- n Poisson ratio
- relmatage relative material age
- fc 28-day mean cylinder compression strength in MPa
- cc cement content of concrete in kg/m3

- w/c ratio (by weight) of water to cementitious material
- a/c ratio (by weight) of aggregate to cement
- t0 age when drying begins [day]
- alpha1 shrinkage parameter – influence of cement type
- alpha2 shrinkage parameter – influence of curing type
- ks cross-section shape factor
- hum relative humidity of the environment
- vs volume to surface ratio [m]
- noshrinkage shrinkage flag (0 = shrinkage included, 1 =
shrinkage ignored)

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat, 2dPlate-
Layer,2dBeamLayer, 3dShellLayer

Table 22: B3 creep and shrinkage model – summary.
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Description B3solid material model for concrete creep
Record Format B3solidmat d(rn) # n(rn) # talpha(rn) # mode(in) # Emod-

uliMode(in) # Microprestress(in) # shm(in) # begoftimeofin-
terest(rn) # endoftimeofinterest(rn) # timefactor(rn) # rel-
MatAge(rn) # fc(rn) # cc(rn) # w/c(rn) # a/c(rn) # t0(rn) #
q1(rn) # q2(rn) # q3(rn) # q4(rn) # c0(rn) # c1(rn) # tS0(rn) #
w h(rn) # ncoeff(rn) # a(rn) # ks(rn) # alpha1(rn) # al-
pha2(rn) # hum(rn) # vs(rn) # q5(rn) # kt(rn) # EpsSinf(rn) #
es0(rn) # r(rn) # rprime(rn) # at(rn) # kSh(rn) # inithum(rn) #
finalhum(rn) #

Parameters - num material model number
- d material density
- n Poisson ratio
- talpha coefficient of thermal expansion
- mode optional parameter; if mode = 0 (default), parame-
ters q1− q4 are predicted from composition of the concrete
mixture (parameters fc, cc, w/c, a/c and t0 need to be spec-
ified). Otherwise values of parameters q1−q4 are expected.
- EmoduliMode optional parameter; analysis of retardation
spectrum (= 0, default value) or least-squares method (= 1)
is used for evaluation of Kelvin units moduli
- Microprestress 0 = basic creep; 1 = drying creep (must
be run as a staggered problem with preceding analysis of
humidity diffusion. Parameter shm must be equal to 3.
The following parameters must be specified: c0, c1, tS0,
w h, ncoeff, a)
- shm shrinkage mode; 0 = no shrinkage; 1 = average
shrinkage (the following parameters must be specified: ks,
alpha1, alpha2, hum and vs for mode = 0 and ks, q5, kt
and EpsSinf for mode = 1); 2 = point shrinkage (needed:
es0, r, rprime, at); 3 = point shrinkage based on MPS
theory (needed: parameter kSh or value of kSh can be ap-
proximately determined if following parameters are given:
inithum, finalhum, alpha1 and alpha2)
- begoftimeofinterest, endoftimeofinterest optional parame-
ters; lower and upper boundary of time interval with good
approximation of the compliance function [day]
- timefactor scaling factor transforming the simulation time
units into days
- relMatAge relative material age [day]
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- fc 28-day mean cylinder compression strength [MPa]
- cc cement content of concrete mixture [kg/m3]
- w/c water to cement ratio (by weight)
- a/c aggregate to cement ratio (by weight)
- t0 age of concrete when drying begins [day]
- q1, q2, q3, q4 parameters of B3 model for basic creep
- c0 MPS theory parameter [MPa−1 day−1]
- c1 MPS theory parameter [MPa]
- tS0 MPS theory parameter - time when drying begins
- w h, ncoeff, a sorption isotherm parameters obtained from
experiments [Pedersen, 1990]
- ks cross section shape factor
- alpha1 optional shrinkage parameter - influence of cement
type (optional parameter, default value is 1.0)
- alpha2 optional shrinkage parameter - influence of curing
type (optional parameter, default value is 1.0)
- hum relative humidity of the environment [-]
- vs volume to surface ratio [m]
- q5, kt, EpsSinf parameters of B3 model for drying creep
- es0 final shrinkage at material point
- at coefficient relating stress-induced thermal strain and
shrinkage
- rprime, r coefficients
- kSh influences magnitude of shrinkage in MPS theory
- inithum, finalhum if provided, approximate value of kSh
can be computed

Supported modes 3dMat, PlaneStress, PlaneStrain, 1dMat, 2dPlateLayer,
2dBeamLayer, 3dShellLayer

Table 23: B3solid creep and shrinkage model – summary.
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1.4.6 Microplane model M4

Model M4 covers inelastic behavior of concrete under complex triaxial stress
states. It is based on the microplane concept and can describe softening. How-
ever, objectivity with respect to element size is not ensured – the parameters
need to be manually adjusted to the element size. Since the tangent stiffness
matrix is not available, elastic stiffness is used. This can lead to a very slow
convergence when used within an implicit approach. The model parameters are
summarized in table 24.

Description M4 material model
Record Format microplane m4 nmp(in) # c3(rn) # c20(rn) # k1(rn) #

k2(rn) # k3(rn) # k4(rn) # E(rn) # n(rn) #
Parameters - nmp number of microplanes, supported values are 21, 28

and 61
- n Poisson ratio
- E Young modulus
- c3,c20, k1, k2, k3, k4 model parameters

Supported modes 3dMat

Table 24: Microplane model M4 – summary.

1.4.7 Damage-plastic model for concrete

This model, developed by Grassl and Jirásek for failure of concrete under general
triaxial stress, is described in detail in [3]. It belongs to the class of damage-
plastic models with yield condition formulated in terms of the effective stress
σ̄ = De : (ε− εp). The stress-strain law is postulated in the form

σ = (1− ω)σ̄ = (1− ω)De : (ε− εp) (56)

where De is the elastic stiffness tensor and ω is a scalar damage parameter. The
plastic part of the model consists of a three-invariant yield condition, nonasso-
ciated flow rule and pressure-dependent hardening law. For simplicity, damage
is assumed to be isotropic. In contrast to pure damage models with damage
driven by the total strain, here the damage is linked to the evolution of plastic
strain.

The yield surface is described in terms of the cylindrical coordinates in the
principal effective stress space (Haigh-Westergaard coordinates), which are the
volumetric effective stress σ̄V = I1(σ̄)/3, the norm of the deviatoric effective
stress ρ̄ =

√
2J2(σ̄), and the Lode angle θ defined by the relation

cos 3θ =
3
√

3

2

J3

J
3/2
2

(57)

where J2 and J3 are the second and third deviatoric invariants. The yield
function

fp(σ̄V, ρ̄, θ̄;κp) =

(
[1− qh(κp)]

(
ρ̄√
6f̄c

+
σ̄V

f̄c

)2

+

√
3

2

ρ̄

f̄c

)2

+

+m0q
2
h(κp)

(
ρ̄r(θ̄)√

6f̄c
+
σ̄V

f̄c

)
− q2

h(κp) (58)
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depends on the effective stress (which enters in the form of cylindrical coordi-
nates) and on the hardening variable κp (which enters through a dimensionless
variable qh). Parameter f̄c is the uniaxial compressive strength. Note that, un-
der uniaxial compression characterized by axial stress σ̄ < 0, we have σ̄V = σ̄/3,
ρ̄ = −

√
2/3 σ̄ and θ̄ = 60o. The yield function then reduces to fp = (σ̄/f̄c)

2−q2
h.

This means that function qh describes the evolution of the uniaxial compressive
yield stress normalized by its maximum value, f̄c.

The evolution of the yield surface during hardening is presented in Fig. 7.
The parabolic shape of the meridians (Fig. 7a) is controlled by the hardening
variable qh and the friction parameter m0. The initial yield surface is closed,
which allows modeling of compaction under highly confined compression. The
initial and intermediate yield surfaces have two vertices on the hydrostatic axis
but the ultimate yield surface has only one vertex on the tensile part of the
hydrostatic axis and opens up along the compressive part of the hydrostatic
axis. The deviatoric sections evolve as shown in Fig. 7b, and their final shape
at full hardening is a rounded triangle at low confinement and almost circular
at high confinement. The shape of the deviatoric section is controlled by the
Willam-Warnke function

r(θ) =
4(1− e2) cos2 θ + (2e− 1)2

2(1− e2) cos θ + (2e− 1)
√

4(1− e2) cos2 θ + 5e2 − 4e
(59)

The eccentricity parameter e that appears in this function, as well as the fric-
tion parameter m0, are calibrated from the values of uniaxial and equibiaxial
compressive strengths and uniaxial tensile strength.
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Figure 7: Evolution of the yield surface during hardening: a) meridional section,
b) deviatoric section for a constant volumetric effective stress of σ̄V = −f̄c/3

The maximum size of the elastic domain is attained when the variable qh is
equal to one (which is its maximum value, as follows from the hardening law,
to be specified in (64)). The yield surface is then described by the equation

fp

(
σ̄V, ρ̄, θ̄; 1

)
≡ 3

2

ρ̄2

f̄2
c

+m0

(
ρ̄√
6f̄c

r(θ̄) +
σ̄V

f̄c

)
− 1 = 0 (60)

The flow rule

ε̇p = λ̇
∂gp

∂σ̄
(61)
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is non-associated, which means that the yield function fp and the plastic po-
tential

gp(σ̄V, ρ̄;κp) =

(
[1− qh(κp)]

(
ρ̄√
6f̄c

+
σ̄V

f̄c

)2

+

√
3

2

ρ̄

f̄c

)2

+

+q2
h(κp)

(
m0ρ̄√

6f̄c
+
mg(σ̄V)

f̄c

)
(62)

do not coincide and, therefore, the direction of the plastic flow ∂gp/∂σ̄ is not
normal to the yield surface. The ratio of the volumetric and the deviatoric
parts of the flow direction is controled by function mg, which depends on the
volumetric stress and is defined as

mg(σ̄V) = AgBgf̄c exp
σ̄V − f̄t/3
Bgf̄c

(63)

where Ag and Bg are model parameters that are determined from certain as-
sumptions on the plastic flow in uniaxial tension and compression.

The dimensionless variable qh that appears in the yield function (58) is a
function of the hardening variable κp. It controls the size and shape of the yield
surface and, thereby, of the elastic domain. The hardening law is given by

qh(κp) =

{
qh0 + (1− qh0)κp(κp

2 − 3κp + 3) if κp < 1
1 if κp ≥ 1

(64)

The initial inclination of the hardening curve (at κp = 0) is positive and finite,
and the inclination at peak (i.e., at κp = 1) is zero.

The evolution law for the hardening variable,2

κ̇p =
‖ε̇p‖
xh (σ̄V)

(2 cos θ̄)2 (65)

sets the rate of the hardening variable equal to the norm of the plastic strain
rate scaled by a hardening ductility measure

xh (σ̄V) =


Ah − (Ah −Bh) exp (−Rh(σ̄V)/Ch) if Rh(σ̄V) ≥ 0

Eh exp(Rh(σ̄V)/Fh) +Dh if Rh(σ̄V) < 0

(66)

The dependence of the scaling factor xh on the volumetric effective stress σ̄V

is constructed such that the model response is more ductile under compression.
The variable

Rh(σ̄V) = − σ̄V

f̄c
− 1

3
(67)

is a linear function of the volumetric effective stress. Model parametersAh, Bh, Ch

and Dh are calibrated from the values of strain at peak stress under uniaxial
tension, uniaxial compression and triaxial compression, whereas the parameters

Eh = Bh −Dh (68)

Fh =
(Bh −Dh)Ch

Bh −Ah
(69)

2In the original paper [3], equation (65) was written with cos2 θ̄ instead of (2 cos θ̄)2, but
all the results presented in that paper were computed with OOFEM using an implementation
based on (65).
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are determined from the conditions of a smooth transition between the two parts
of equation (66) at Rh = 0.

For the present model, the evolution of damage starts after full saturation
of plastic hardening, i.e., at κp = 1. This greatly facilitates calibration of model
parameters, because the strength envelope is fully controled by the plastic part
of the model and damage affects only the softening behavior. In contrast to
pure damage models, damage is assumed to be driven by the plastic strain,
more specifically by its volumetric part, which is closely related to cracking.
To slow down the evolution of damage under compressive stress states, the
damage-driving variable κd is not set equal to the volumetric plastic strain, but
it is defined incrementally by the rate equation

κ̇d =

{
0 if κp < 1
Tr(ε̇p)/xs (σ̄V) if κp ≥ 1

(70)

where

xs(σ̄V) =


1 +AsR

2
s (σ̄V) if Rs(σ̄V) < 1

1− 3As + 4As

√
Rs(σ̄V) if Rs(σ̄V) ≥ 1

(71)

is a softening ductility measure. Parameter As is determined from the softening
response in uniaxial compression. The dimensionless variable Rs = ε̇−pV/ε̇pV is
defined as the ratio between the “negative” volumetric plastic strain rate

ε̇−pV =

3∑
I=1

〈−ε̇pI〉 (72)

and the total volumetric plastic strain rate ε̇pV. This ratio depends only on
the flow direction ∂gp/∂σ̄, and thus Rs can be shown to be a unique function
of the volumetric effective stress. In (72), ε̇pI are the principal components of
the rate of plastic strains and 〈·〉 denotes the McAuley brackets (positive-part
operator). For uniaxial tension, for instance, all three principal plastic strain
rates are nonnegative, and so ε̇−pV = 0, Rs = 0 and xs = 1. This means that
under uniaxial tensile loading we have κd = κp − 1. On the other hand, under
compressive stress states the negative principal plastic strain rates lead to a
ductility measure xs greater than one and the evolution of damage is slowed
down. It should be emphasized that the flow rule for this specific model is
constructed such that the volumetric part of plastic strain rate at the ultimate
yield surface cannot be negative.

The relation between the damage variable ω and the internal variable κd

(maximum level of equivalent strain) is assumed to have the exponential form

ω = 1− exp (−κd/εf ) (73)

where εf is a parameter that controls the slope of the softening curve. To avoid
pathological sensitivity of the results to the size of finite elements, this parameter
is adjusted according to the element size. Therefore, another parameter, wf , is
considered as a material property, and εf is evaluated as wf/h where h is the
size of the finite element (projected onto the direction of maximum principal
strain).

The damage-plastic model contains 15 parameters, but only 6 of them are
actually calibrated for different concrete types, namely Young’s modulus E,
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Description Damage-plastic model for concrete
Record Format ConcreteDPM d(rn) # E(rn) # n(rn) # tAlpha(rn) # ft(rn) #

fc(rn) # wf(rn) # ecc(rn) # kinit(rn) # Ahard(rn) # Bhard(rn) #
Chard(rn) # Dhard(rn) # Asoft(rn) # helem(rn) # dila-
tion(rn) # yieldtol(rn) # newtoniter(in) #

Parameters - d material density
- E Young modulus
- n Poisson ratio
- tAlpha thermal dilatation coefficient
- ft uniaxial tensile strength
- fc uniaxial compressive strength
- wf parameter wf that controls the slope of the softening
branch (serves for the evaluation of εf = wf/h to be used
in (73))
- ecc eccentricity parameter e from (59), optional, default
value 0.525
- kinit parameter qh0 from (64), optional, default value 0.1
- Ahard parameter Ah from (66), optional, default value
0.08
- Bhard parameter Bh from (66), optional, default value
0.003
- Chard parameter Ch from (66), optional, default value 2
- Dhard parameter Dh from (66), optional, default value
10−6

- Asoft parameter As from (71), optional, default value 15
- helem element size h, optional (if not specified, the actual
element size is used)
- dilation dilation factor (ratio between lateral and axial
plastic strain rates in the softening regime under uniaxial
compression), optional, default value -0.85
- yieldtol tolerance for the implicit stress return algorithm,
optional, default value 10−10

- newtoniter maximum number of iterations in the implicit
stress return algorithm, optional, default value 100

Supported modes 3dMat

Table 25: Damage-plastic model for concrete – summary.

Poisson’s ratio ν, tensile strength ft, compressive strength fc, parameter εf of
the damage law (73), and parameter As in the ductility measure (71) of the
damage model. The remaining parameters can be set to their default values
specified in [3].

The model parameters are summarized in table 25. Note that it is possi-
ble to specify the “size” of finite element, h, which (if specified) replaces the
actual element size in the relation between the material parameter wf and the
parameter εf = wf/h that is used in (73). The usual approach is to consider h
as the actual element size (evaluated automatically by OOFEM), in which case
the optional parameter h is missing (or is set to 0., which has the same effect in
the code). However, for various studies of mesh sensitivity it is useful to have
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the option of setting εf to a fixed value, independent of the element size. This
can be achieved by specifying h as an input “material” value. For instance, if h
is set to 1, then the parameter εf used in (73) will have the same value as the
input parameter wf , independently of the actual element size.

1.5 Orthotropic damage model with fixed crack orienta-
tions for composites

The model is designed for transversely isotropic elastic material defined by five
elastic material constants. Typical example is a carbon fiber tow. Axis 1 rep-
resents the material principal direction. The orthotropic material constants are
defined as

ν12 = ν13, ν21 = ν31, ν23 = ν32, E22 = E33 (74)

G12 = G13 = G21 = G31, G23 = G32 (75)
ν12 = ν13

E11
=
ν21 = ν31

E22
,
ν31 = ν21

E33
=
ν13 = ν12

E11
(76)

Material orientation on a finite element can be specified with lcs optional
parameter. If unspecified, material orientation is the same as the global coor-
dinate system. lcs array contains six numbers, where the first three numbers
represent a directional vector of the local x-axis, and the next three numbers
represent a directional vector of the local y-axis with the reference to the global
coordinate system. The composite material is extended to 1D and is also suit-
able for beams and trusses. In such particular case, the lcs has no effect and
the 1D element orientation is aligned with the global xx component.

The index p, p ∈ {11, 22, 33, 23, 31, 12} symbolizes six components of stress
or strain vectors. The linear softening occurs after reaching a critical stress fp,0,
see Fig. 8. Orientation of cracks is assumed to be orthogonal and aligned with
an orientation of material axes [1, pp.236]. The transverse isotropy is generally
lost upon fracture, material becomes orthotropic and six damage parameters dp
are introduced.

The compliance material matrix H, in the secant form and including damage
parameters, reads

1
(1−d11)E11

− ν21
E22

− ν31
E33

0 0 0

− ν12
E11

1
(1−d22)E22

− ν32
E33

0 0 0

− ν13
E11

− ν23
E22

1
(1−d33)E33

0 0 0

0 0 0 1
(1−d23)G23

0 0

0 0 0 0 1
(1−d31)G31

0

0 0 0 0 0 1
(1−d12)G12

 (77)

Damage occurs when any out of six stress tensor components exceeds a given
strength fp,0

|σp| ≥ |fp,0| (78)

Positive and negative ultimate strengths can be generally different but share
the same damage variable. At the point of damage initiation, see Fig. 8, one
evaluates εp,E and characteristic element length lp, generally different for each
damage mode. Given the fracture energy GF,p, the maximum strain at zero
stress εp,0 is computed

εp,0 = εp,E +
2GF,p
fp,0lp

(79)
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Figure 8: Implemented stress-strain evolution with damage for 1D case. Tension
and compression are separated, but sharing the same damage parameter.

The point of damage initiation is never reached exactly, one needs to in-
terpolate between the previous equilibrated step and current step to achieve
objectivity.

The evolution of damage dp is based on the evolution of corresponding strain
εp. A maximum achieved strain is stored in the variable κp. If εp > κp the dam-
age may grow so the corresponding damage variable dp may increase. Desired
stress σ′p is evaluated from the actual strain εp

σ′p = fp,0
εp,0 − εp
εp,0 − εp,E

(80)

and the calculation of damage variables dp stems from Eq. 77, for example

d11 = 1− σ′11

E11

(
ε11 + ν21

E22
σ22 + ν31

E33
σ33

) (81)

d12 = 1− σ′12

G12ε12
(82)

Damage is always controled not to decrease. Fig. 9 shows a typical performance
for this damage model in one direction.

The damage initiation is based on a trial stress. It becomes necessary for
higher precision to skip a few first iteration, typically 5, and then to introduce
damage. A parameter afterIter is designed for this purpose and MinIter forces
a solver always to proceed certain amount of iterations.

allowSnapBack skips the checking of sufficient fracture energy for each di-
rection. If not specified, all directions are checked to prevent snap-back which
dissipates incorrect amount of energy.
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Figure 9: Typical loading/unloading material performance for homogenized
stress and strain in the direction ‘2’. Note that one damage parameter is com-
mon for both tension and compression.

1.6 Orthotropic elastoplastic model with isotropic dam-
age

This model combines orthotropic elastoplasticity with isotropic damage. Mate-
rial orthotropy is described by the fabric tensor, i.e., a symmetric second-order
tensor with principal directions aligned with the axes of orthotropy and prin-
cipal values normalized such that their sum is 3. Elastic constants as well as
coefficients that appear in the yield condition are linked to the principal values
of the fabric tensor and to porosity. The yield condition is piecewise quadratic,
with different parameters in the regions of positive and negative volumetric
strain.

1.6.1 Local formulation

The basic equations include an additive decomposition of total strain into elastic
(reversible) part and plastic (irreversible) part

ε = εe + εp, (83)

the stress strain law

σ = (1− ω) σ̄ = (1− ω)D : εe, (84)

the yield function
f(σ̄, κ) =

√
σ̄ : F : σ̄ − σY (κ). (85)

loading-unloading conditions

f(σ̄, κ) ≤ 0 λ̇ ≥ 0 λ̇f(σ̄, κ) = 0, (86)

evolution law for plastic strain

ε̇p = λ̇
∂f

∂σ̄
, (87)
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Description Orthotropic damage model with fixed crack orientations for
composites

Record Format compdammat num(in) # d(rn) # Exx(rn) # EyyEzz(rn) #
nuxynuxz(rn) # nuyz(rn) # GxyGxz(rn) # Tension f0 Gf(ra) #
Compres f0 Gf(ra) # [afterIter(in) #] [allowSnap-
Back(() #ia)]

Parameters - num material model number
- d material density
- Exx Young’s modulus for principal direction xx
- EyyEzz Young’s modulus in orthogonal directions to the
principal direction xx
- nuxynuxz Poisson’s ratio in xy and xz directions
- nuyz Poisson’s ratio in yz direction
- GxyGxz shear modulus in xy and xz directions
- Tension f0 Gf array with six pairs of positive numbers.
Each pair describes maximum stress in tension and fracture
energy for each direction (xx, yy, zz, yz, zx, xy)
- Compres f0 Gf array with six pairs of numbers. Each pair
describes maximum stress in compression (given as a nega-
tive number) and positive fracture energy for each direction
(xx, yy, zz, yz, zx, xy)

Supported modes 3dMat, 1dMat
- afterIter how many iterations must pass until damage is
computed from strains, zero is default. User must ensure
that the solver proceeds the minimum number of iterations.
- allowSnapBack array to skip checking for snap-back. The
array members are 1-6 for tension and 7-12 for compression
components.

Table 26: Orthotropic damage model with fixed crack orientations for compos-
ites – summary.

the incremental definition of cumulated plastic strain

κ̇ = ‖ε̇p‖, (88)

the law governing the evolution of the damage variable

ω(κ) = ωc(1− e−aκ), (89)

and the hardening law

σY (κ) = 1 + σH(1− e−sκ). (90)

In the equations above, σ̄ is the effective stress tensor, D is the elastic stiffness
tensor, f is the yield function, λ is the consistency parameter (plastic multiplier),
ω is the damage variable, σY is the yield stress and s, a, σH and ωc are positive
material parameters. Material anisotropy is characterized by the second-order
positive definite fabric tensor

M =

3∑
i=1

mi(mi ⊗mi), (91)
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normalized such that Tr(M) = 3, mi are the eigenvalues and mi the eigenvec-
tors. The eigenvectors of the fabric tensor determine the directions of material
orthotropy and the components of the elastic stiffness tensor D are linked to
eigenvalues of the fabric tensor. In the coordinate system aligned with mi,
i = 1, 2, 3, the stiffness can be presented in Voigt (engineering) notation as

D =



1
E1

−ν12E1
−ν13E1

0 0 0

−ν21E2

1
E2

−ν23E2
0 0 0

−ν31E3
−ν32E3

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12



−1

, (92)

where Ei = E0ρ
km2l

i , Gij = G0ρ
kml

im
l
j and νij = ν0

ml
i

ml
j

. Here, E0, G0 and

ν0 are elastic constants characterizing the compact (poreless) material, ρ is the
volume fraction of solid phase and k and l are dimensionless exponents.

Similar relations as for the stiffness tensor are also postulated for the com-
ponents of a fourth-order tensor F that is used in the yield condition. The yield
condition is divided into tensile and compressive parts. Tensor F is different
in each part of the effective stress space. This tensor is denoted F+ in tensile
part, characterized by N̂ : σ̄ ≤ 0 and F− in compressive part, characterized by
N̂ : σ̄ ≤ 0, where

N̂ =

∑3
i=1m

−2q
i√∑3

i=1m
−4q
i

(mi ⊗mi) (93)

F± =



1

(σ±1 )
2 − χ±12

(σ±1 )
2 − χ±13

(σ±1 )
2 0 0 0

− χ±21

(σ±2 )
2

1

(σ±2 )
2 − χ±23

(σ±2 )
2 0 0 0

− χ±31

(σ±3 )
2 − χ±32

(σ±3 )
2

1

(σ±3 )
2 0 0 0

0 0 0 1
τ23

0 0

0 0 0 0 1
τ13

0

0 0 0 0 0 1
τ12


. (94)

In the equation above σ±i = σ±0 ρ
pm2q

i is uniaxial yield stress along the i-th
principal axis of orthotropy, τij = τ0ρ

pmq
im

q
j is the shear yield stress in the

plane of orthotropy and χ±ij = χ±0
m2q

i

m2q
j

is the so-called interaction coefficient, p

and q are dimensionless exponents and parameters with subscript 0 are related
to a fictitious material with zero porosity. The yield surface is continuously
differentiable if the parameters values are constrained by the condition

χ−0 + 1

(σ−0 )2
=
χ+

0 + 1

(σ+
0 )2

. (95)

The model description and parameters are summarized in table 27.
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Description Anisotropic elastoplastic model with isotropic damage
Record Format TrabBone3d (in) # d(rn) # eps0(rn) # nu0(rn) # mu0(rn) #

expk(rn) # expl(rn) # m1(rn) # m2(rn) # rho(rn) #
sig0pos(rn) # sig0neg(rn) # chi0pos(rn) # chi0neg(rn) #
tau0(rn) # plashardfactor(rn) # expplashard(rn) # exp-
dam(rn) # critdam(rn) #

Parameters - material number
- d material density
- eps0 Young modulus (at zero porosity)
- nu0 Poisson ratio (at zero porosity)
- mu0 shear modulus of elasticity (at zero porosity)
- m1 first eigenvalue of the fabric tensor
- m2 second eigenvalue of the fabric tensor
- rho volume fraction of solid phase
- sig0pos yield stress in tension
- sig0neg yield stress in compression
- tau0 yield stress in shear
- chi0pos interaction coefficient in tension
- plashardfactor hardening parameter
- expplashard exponent in hardening law
- expdam exponent in damage law
- critdam critical damage
- expk exponent k in the expression for elastic stiffness
- expl exponent l in the expression for elastic stiffness
- expq exponent q in the expression for tensor F
- expp exponent p in the expression for tensor F

Supported modes 3dMat

Table 27: Anisotropic elastoplastic model with isotropic damage - summary.

1.6.2 Nonlocal formulation

The model is regularized by the over-nonlocal formulation with damage driven
by a combination of local and nonlocal cumulated plastic strain

κ̂ = (1−m)κ+mκ̄, (96)

where m is a dimensionless material parameter (typically m > 1) and

κ̄(x) =

∫
V

α(x, s)κ(s) ds (97)

is the nonlocal cumulated plastic strain. The nonlocal weight function is defined
as

α(x, s) =
α0(‖x− s‖)∫

V

α0(‖x− t‖) dt
(98)

where

α0(r) =

{ (
1− r2

R2

)2

if r ≤ R
0 if r > R

(99)
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Parameter R is related to the internal length of the material. The model de-
scription and parameters are summarized in table 28.

Description Nonlocal anisotropic elastoplastic model with isotropic
damage

Record Format TrabBoneNL3d (in) # d(rn) # eps0(rn) # nu0(rn) #
mu0(rn) # expk(rn) # expl(rn) # m1(rn) # m2(rn) # rho(rn) #
sig0pos(rn) # sig0neg(rn) # chi0pos(rn) # chi0neg(rn) #
tau0(rn) # plashardfactor(rn) # expplashard(rn) # exp-
dam(rn) # critdam(rn) # m(rn) # R(rn) #

Parameters - material number
- d material density
- eps0 Young modulus (at zero porosity)
- nu0 Poisson ratio (at zero porosity)
- mu0 shear modulus (at zero porosity)
- m1 first eigenvalue of the fabric tensor
- m2 second eigenvalue of the fabric tensor
- rho volume fraction of the solid phase
- sig0pos yield stress in tension
- tau0 yield stress in shear
- chi0pos interaction coefficient in tension
- chi0neg interaction coefficient in compression
- plashardfactor hardening parameter
- expplashard exponent in the hardening law
- expdam exponent in the damage law
- critdam critical damage
- expk exponent k in the expression for elastic stiffness
- expl exponent l in the expression for elastic stiffness
- expq exponent q in the expression for tensor F
- expp exponent p in the expression for tensor F
- m over-nonlocal parameter
- R nonlocal interaction radius

Supported modes 3dMat

Table 28: Nonlocal formulation of anisotropic elastoplastic model with isotropic
damage – summary.
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2 Material Models for Transport Problems

2.1 Isotropic linear material

Linear isotropic material model for transport problems. The model parameters
are summarized in table 29.

Description Linear isotropic elastic material
Record Format IsoHeat num(in) # d(rn) # k(rn) # c(rn) #
Parameters - num material model number

- d material density
- k Conductivity
- c Specific heat capacity

Supported modes 2dHeat

Table 29: Linear Isotropic Material - summary.

2.2 Material for cement hydration

CemhydMat represents a hydrating material based on CEMHYD3D model ver-
sion 3.0, developed at NIST [2]. The model represents a digital hydrating mi-
crostructure, driven with cellular automata rules and combined with cement
chemistry. Ordinary Portland cement is treated without any difficulties, blended
cements are ususally decomposed into hydrating Portland contribution and in-
tert secondary cementitious material. The microstructure size can be from
10 × 10 × 10 to over 200 × 200 × 200 µm. For standard computations the
size 50× 50× 50 suffices.

Each material instance creates an independent microstructure. It is also
possible to enforce having different microstructures in each integration point.
The hydrating model is coupled with temperature and averaging over shared
elements within one material instance occurs during the solution. Such ap-
proach allows domain partitioning to many CemhydMat instances, depending
on expected accuracy or computational speed. A more detailed description with
engineering examples was published [13]. Table 30 summarizes input parame-
ters.

The input XML file specifies the details about cement and concrete com-
position. It is possible to start all simulations from the scratch, i.e. with the
reconstruction of digital microstructure. Alternatively, the digital microstruc-
ture can be provided directly in two files; one for chemical phases, the second for
particle’s IDs. The XML input file can be created with the CemPy package, ob-
tainable from http://mech.fsv.cvut.cz/∼smilauer/index.php?id=software. The
CemPy package alleviates tedious preparation of particle size distribution etc.

The linear solver (specified as NonStationaryProblem) performs well when
the time integration step is small enough (order of minutes) and heat capacity,
conductivity and density remain constant. If not so, use of nonlinear solver is
strongly suggested (specified as NlTransientTransportProblem).
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Description Cemhyd hydrating material
Record Format CemhydMat num(in) # d(rn) # k(rn) # c(rn) # file(s) #

[eachGP(in) #] [densityType(in) #] [conductivityType(in) #]
[capacityType(in) #] [castingtime(ia) #] [nowarnings(ia) #]

Parameters - num material model number
- d material density
- k Conductivity
- c Specific heat capacity
- file XML input file for cement microstructure and concrete
composition
- eachGP 0 (default) no separate microstructures in each
GP, 1 assign separate microstructures to each GP
- densityType 0 (default) get density from OOFEM input
file, 1 get it from XML input file
- conductivityType 0 (default) get constant conductivity
from OOFEM input file, 1 compute as λ = k(1.33 −
0.33DoH) [10]
- capacityType 0 (default) get capacity, 1 according to
Bentz, 2 according to XML and CEMHYD3D routines
- castingtime optional casting time of concrete, from which
hydration takes place
- nowarnings supresses warnings when material data are out
of standard ranges. The array of size 4 represent entries
for density, conductivity, capacity, temperature. Nonzero
values mean supression.

Supported modes 2dHeat, 3dHeat

Table 30: Cemhydmat - summary.

2.3 Coupled heat and mass transfer material model

Coupled heat and mass transfer material model. Source: T. Krejci doctoral
thesis; Bazant and Najjar, 1972; Pedersen, 1990. Assumptions: water vapor is
the only driving mechanism; relative humidity is from range 0.2 - 0.98 (I and II
regions). The model parameters are summarized in table 31.

51



Description Coupled heat and mass transfer material model
Record Format HeMotk num(in) # d(rn) # a 0(rn) # nn(rn) # phi c(rn) #

delta wet(rn) # w h(rn) # n(rn) # a(rn) # latent(rn) # c(rn) #
rho(rn) # chi eff(rn) # por(rn) # rho gws(rn) #

Parameters - num material model number
- d, rho material density
- a 0 constant (obtained from experiments) a 0 [Bazant and
Najjar, 1972]
- nn constant-exponent (obtained from experiments) n
[Bazant and Najjar, 1972]
- phi c constant-relative humidity (obtained from experi-
ments) phi c [Bazant and Najjar, 1972]
- delta wet constant-water vapor permeability (obtained
from experiments) delta wet [Bazant and Najjar, 1972]
- w h constant water content (obtained from experiments)
w h [Pedersen, 1990]
- n constant-exponent (obtained from experiments) n [Ped-
ersen, 1990]
- a constant (obtained from experiments) A [Pedersen,
1990]
- latent latent heat of evaporation
- c thermal capacity
- chi eff effective thermal conductivity
- por porosity
- rho gws saturation volume density

Supported modes 2dHeMo

Table 31: Coupled heat and mass transfer material model - summary.
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3 Material Models for Fluid Dynamic

3.1 Newtonian fluid

Constitutive model of Newtonian fluid. The model parameters are summarized
in table 32.

Description Newtonian Fluid material
Record Format NewtonianFluid num(in) # d(rn) # mu(rn) #
Parameters - num material model number

- d material density
- mu viscosity

Supported modes 2dFlow

Table 32: Newtonian Fluid material - summary.

3.2 Bingham fluid

Constitutive model of Bingham fluid. This is a constitutive model of non-
Newtonian type. The model parameters are summarized in table 33.

In the Bingham model the flow is characterized by following constitutive
equation

τ = τ 0 + µγ̇ if τ̇ ≥ τ0 (100)

γ̇ = 0 if τ̇ ≤ τ0 (101)

where τ is the shear stress applied to material, τ̇ =
√
τ : τ is the shear stress

measure, γ̇ is the shear rate, τ 0 is the yield stress, and µ is the plastic vis-
cosity. The parameters for the model can be in general determined using two
possibilities: (i) stress controlled rheometer, when the stress is applied to mate-
rial and shear rate is measured, and (ii) shear rate controlled rheometer, where
concrete is sheared and stress is measured. However, most of the widely used
tests are unsatisfactory in the sense, that they measure only one parameter.
These one-factor tests include slump test, penetrating rod test, and Ve-Be test.
Recently, some tests providing two parameters on output have been designed
(BTRHEOM, IBB, and BML rheometers). Also a refined version of the standard
slump test has been developed for estimating yield stress and plastic viscosity.
The test is based on measuring the time necessary for the upper surface of the
concrete cone in the slump to fall a distance 100 mm. Semi-empirical models
are then proposed for estimating yield stress and viscosity based on measured
results. The advantage is, that this test does not require any special equipment,
provided that the one for the standard version is available.

In order to avoid numerical difficulties caused by the existence of the sharp
angle in material model response at τ = τ0, the numerical implementation uses
following smoothed relation for viscosity

µ = µ0 +
τ0
γ̇

(1− e−mγ̇) (102)

where m is so called stress growth parameter. The higher value of parameter m,
the closer approximation of the original constitutive equation (100) is obtained.
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Description Bingham fluid material
Record Format BinghamFluid num(in) # d(rn) # mu0(rn) # tau0(rn) #
Parameters - num material model number

- d material density
- mu0 viscosity
- tau0 Yield stress

Supported modes 2dFlow

Table 33: Bingham Fluid material - summary.

3.3 Two-fluid material

Material coupling the behaviour of two particulat materials based on rule of
mixture. The weighting factor is VOF fraction. The model parameters are
summarized in table 34.

Description Two-Fluid material
Record Format twofluidmat num(in) # mat(ia) #
Parameters - num material model number

- mat integer array contaning two numbers representing
numbers of material models of which the receiver is com-
posed. Material with index 0 is a material, that is fully
active in a cell with VOF=0, material with index 1 is a
material fuully active in a cell with VOF=1.

Supported modes 2dFlow

Table 34: Two-Fluid material - summary.
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4 Material Drivers - Theory & Application

The purpose of this section is to present the theoretical backgroung of some
handy general purpose algorithms, that are provided in oofem in the form of
general material base classes. They can significantly facilitate the implemen-
tation of particular material models that are based on such concepts. Typical
example can be a general purpose plasticity class, that implements general stress
return and stifness matrix evaluation algorithms, based on provided methods
for computing yield functions and corresponding derivatives. Particular models
are simply derived from the base classes, inheriting common algorithms.

4.1 Multisurface plasticity driver - MPlasticMaterial class

In this section, a general multisurface plasticity theory with hardening/softening
is reviewed. The presented algorithms are implemented in MPlasticMaterial
class.

4.1.1 Plasticity overview

Let σ, ε, and εp be the stress, total strain, and plastic strain vectors, respectively.
It is assumed that the total strain is decomposed into reversible elastic and
irreversible plastic parts

ε = εe + εp (103)

The elastic response is characterized in terms of elastic constitutive matrix D
as

σ = Dεe = D(ε− εp) (104)

As long as the stress remains inside the elastic domain, the deformation process
is purely elastic and the plastic strain does not change. It is assumed that the
elastic domain, denoted as IE is bounded by a composite yield surface. It is
defined as

IE = {(σ,κ)|fi(σ,κ) < 0, for all i ∈ {1, · · · ,m}} (105)

where fi(σ,κ) are m ≥ 1 yield functions intersecting in a possibly non-smooth
fashion. The vector κ contains internal variables controlling the evolution of
yield surfaces (amount of hardening or softening). The evolution of plastic
strain εp is expressed in Koiter’s form. Assuming the non-associated plasticity,
this reads

ε̇p =

m∑
i=1

λi∂σgi(σ,κ) (106)

where gi are plastic potential functions. The λi are referred as plastic consis-
tency parameters, which satisfy the following Kuhn-Tucker conditions

λi ≥ 0, fi ≤ 0, and λifi = 0 (107)

These conditions imply that in the elastic regime the yield function must remain
negative and the rate of the plastic multiplier is zero (plastic strain remains
constant) while in the plastic regime the yield function must be equal to zero
(stress remains on the surface) and the rate of the plastic multiplier is positive.

55



The evolution of vector of internal hardening/softening variables κ is expressed
in terms of a general hardening/softening law of the form

κ̇ = κ̇(σ,λ) (108)

where λ is the vector of plastic consistency parameters λi.

4.1.2 Closest-point return algorithm

Let us assume, that at time tn the total and plastic strain vectors and internal
variables are known

{εn, εpn,κn} given at tn

By applying an implicit backward Euler difference scheme to the evolution equa-
tions (104 and 106) and making use of the initial conditions the following discrete
non-linear system is obtained

εn+1 = εn + ∆ε (109)

σn+1 = D(εn+1 − εpn+1) (110)

εpn+1 = εpn +
∑

λi∂σgi(σn+1,κn+1) (111)

In addition, the discrete counterpart of the Kuhn-Tucker conditions becomes

fi(σn+1,κn+1) = 0 (112)

λin+1 ≥ 0 (113)

λin+1fi(σn+1,κn+1) = 0 (114)

In the standard displacement-based finite element analysis, the strain evolution
is determined by the displacement increments computed on the structural level.
The basic task on the level of a material point is to evaluate the stress evolution
generated by strain history. According to this, the strain driven algorithm
is assumed, i.e. that the total strain εn+1 is given. Then, the Kuhn-Tucker
conditions determine whether a constraint is active. The set of active constraints
is denoted as Jact and is defined as

Jact = {β ∈ {1, · · · ,m}|fβ = 0 & ḟβ = 0} (115)

Let’s start with the definition of the residual of plastic flow

Rn+1 = −εpn+1 + εpn +
∑
j∈Jact

λjn+1∂σgn+1 (116)

By noting that total strain εn+1 is fixed during the increment we can express
the plastic strain increment using (104) as

∆εpn+1 = −D∆σn+1 (117)

The linearization of the plastic flow residual (116) yields3

R+D−1∆σ +
∑

λ∂σσg∆σ +

+
∑

λ∂σκg · (∂σκ∆σ + ∂λκ∆λ) +
∑

∆λ∂σg = 0 (118)

3For brevity, the simplified notation is introduced: f = f(σ,κ), g = g(σ, κ), κ = κ(σ, λ),
and subscript n+ 1 is omitted.
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From the previous equation, the stress increment ∆σ can be expressed as

∆σ = −H−1
(
R+

∑
∆λ∂σg +

∑
λ∂σκg∂λκ∆λ

)
(119)

where H is algorithmic moduli defined as

H =
[
D−1 +

∑
λ∂σσg +

∑
λ∂σκg∂σκ

]
(120)

Differentiation of active discrete consistency conditions (112) yields

f + ∂σf∆σ + ∂κf(∂σκ∆σ + ∂λκ∆λ) = 0 (121)

Finally, by combining equations (119) and (121), one can obtain expression for
incremental vector of consistency parameters ∆λ[

V TH−1U − ∂κf∂λκ
]

∆λ = f − V TH−1R (122)

where the matrices U and V are defined as

U =
[
∂σg +

∑
λ∂σκg∂λκ

]
(123)

V = [∂σf + ∂κf∂σκ] (124)

Before presenting the final return mapping algorithm, the algorithm for de-
termination of the active constrains should be discussed. A yield surface fi,n+1

is active if λin+1 > 0. A systematic enforcement of the discrete Kuhn-Tucker
condition (112), which relies on the solution of return mapping algorithm, then
serves as the basis for determining the active constraints. The starting point in
enforcing (112) is to define the trial set

J trialact = {j ∈ {1, · · · ,m}|f trialj,n+1 > 0} (125)

where Jact ⊆ J trialact . Two different procedures can be adopted to determine the
final set Jact. The conceptual procedure is as follows

• Solve the closest point projection with Jact = J trialact to obtain final stresses,
along with λin+1, i ∈ J trialact .

• Check the sign of λin+1. If λin+1 < 0, for some i ∈ J trialact , drop the i−th
constrain from the active set and goto first point. Otherwise exit.

In the procedure 2, the working set J trialact is allowed to change within the
iteration process, as follows

• Let J
(k)
act be the working set at the k-th iteration. Compute increments

∆λ
i,(k)
n+1 , i ∈ J

(k)
act .

• Update and check the signs of ∆λ
i,(k)
n+1 . If ∆λ

i,(k)
n+1 < 0, drop the i-th

constrain from the active set J
(k)
act and restart the iteration. Otherwise

continue with next iteration.

If the consistency parameters ∆λi can be shown to increase monotonically
within the return mapping algorithm, the the latter procedure is preferred since
it leads to more efficient computer implementation.

The overall algorithm is convergent, first order accurate and unconditionally
stable. The general algorithm is summarized in table (4.1.2).

57



1. Elastic predictor

(a) Compute Elastic predictor (assume frozen plastic flow)
σtrialn+1 = D (εn+1 − εpn)
f triali,n+1 = fi(σ

trial
n+1 ,κn), for i ∈ {1, · · · ,m}

(b) Check for plastic processes IF f triali,n+1 ≤ 0 for all i ∈ {1, · · · ,m} THEN:

Trial state is the final state, EXIT.

ELSE:

J
(0)
act = {i ∈ {1, · · · ,m}|f triali,n+1 > 0}
ε
p(0)
n+1 = εpn, κ

(0)
n+1 = κn, λ

i(0)
n+1 = 0

ENDIF

2. Plastic Corrector

(c) Evaluate plastic strain residual

σ
(k)
n+1 = D

(
εn+1 − εp(k)n+1

)
R

(k)
n+1 = −εp(k)n+1 + εpn +

∑
λ
i(k)
n+1∂σgi

(d) Check convergence

f
(k)
i,n+1 = fi(σ

(k)
n+1,κ

(k)
n+1)

if f
(k)
i,n+1 < TOL, for all i ∈ J(k)

act and ‖R(k)
n+1‖ < TOL then EXIT

(e) Compute consistent moduli

G =
[
V TH−1U − ∂κf∂λκ

]−1

(f) Obtain increments to consistency parameter

∆λ
(k)
n+1 = G{f − V TH−1R}(k)n+1

If using procedure 2 to determine active constrains, then update the
active set and restart iteration if necessary

(g) Obtain increments of plastic strains and internal variables

∆ε
p(k)
n+1 = D−1

{
R

(k)
n+1 +

∑
∆λ

i(k)
n+1∂σg

(k)
n+1 +

∑
λ
i(k)
n+1∂σκg

(k)
n+1∂λκ∆λ

i(k)
n+1

}
∆κ

(k)
n+1 = κ̇(σ(k)n+1 ,λkn+1)

(h) Update state variables

ε
p(k+1)
n+1 = ε

p(k)
n+1 + ∆ε

p(k)
n+1

κ
(k+1)
n+1 = κ

(k)
n+1 + ∆κ

(k)
n+1

λ
i(k+1)
n+1 = λ

i(k)
n+1 + ∆λ

(k)
n+1, i ∈ Jact

(i) Set k=k+1 and goto step (b)

Table 35: General multisurface closest point algorithm

4.1.3 Algorithmic stiffness

Differentiation of the elastic stress-strain relations (110) and the discrete flow
rule (111) yields

dσn+1 = D
(
dεn+1 − dεpn+1

)
(126)
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dεpn+1 =
∑(

λi∂σσgdσ + λi∂σκg
(
∂σκdσ + ∂λκdλ

i
)

+ dλi∂σg
)

(127)

Combining this two equations, one obtains following relation

dσ = Ξn+1

{
dεn+1 −

∑
λi∂σκg∂λκdλ

i −
∑

dλi∂σg
}

(128)

where Ξn+1 is the algorithmic moduli defined as

Ξn+1 =
[
D−1 +

∑
λi∂σσg +

∑
λ∂σκg∂σκ

]
(129)

Differentiation of discrete consistency condition yields

∂σf
idσ + ∂κf

i(∂σκdσ + ∂λκdλ) = 0 (130)

By substitution of (128) into (130) the following relation is obtained

dλ = G {V Ξdε} (131)

where matrix G is defined as

G =
[
V TΞU − ∂κf∂λκ

]−1

(132)

Finally, by substitution of (132) into (128) one obtains the algorithmic elasto-
plastic tangent moduli

dσ

dε
|n+1 = Ξ−ΞU (V ΞU − [∂κf ][∂λκ])V Ξ (133)

4.1.4 Implementation of particular models

As follows from previous sections, a new plasticity based class has to provide only
some model-specific services. The list of services, that should be implemented
includes (for full reference, please consult documentation of MPlasticMaterial
class):

• method for computing the value of yield function (computeYieldValueAt
service)

• method for computing stress gradients of yield and load functions (method
computeStressGradientVector)

• method for computing hardening variable gradients of yield and load func-
tions (method computeKGradientVector)

• methods for computing gradient of hardening variables with respect to
stress and plastic multipliers vectors (computeReducedHardeningVarsSig-
maGradient and computeReducedHardeningVarsLamGradient methods)

• method for evaluating the increments of hardening variables due to reached
state (computeStrainHardeningVarsIncrement)

• methods for computing second order derivatives of load and yield func-
tions (computeReducedSSGradientMatrix and computeReducedSKGradi-
entMatrix methods). Necessary only if consistent stiffness is required.
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4.2 Isotropic damage model – IsotropicDamageMaterial
class

In this section, the implementation of an isotropic damage model will be de-
scribed. To cover the various models based on isotropic damage concept, a base
class IsotropicDamageMaterial is defined first, declaring the necessary services
and providing the implementation of them, which are general. The derived
classes then only implement a particular damage-evolution law.

The isotropic damage models are based on the simplifying assumption that
the stiffness degradation is isotropic, i.e., stiffness moduli corresponding to dif-
ferent directions decrease proportionally and independently of direction of load-
ing. Consequently, the damaged stiffness matrix is expressed as

D = (1− ω)De,

where De is elastic stiffness matrix of the undamaged material and ω is the
damage parameter. Initially, ω is set to zero, representing the virgin undam-
aged material, and the response is linear-elastic. As the material undergoes
the deformation, the initiation and propagation of microdefects decreases the
stiffness, which is represented by the growth of the damage parameter ω. For
ω = 1, the stiffness completely disappears.

In the present context, the D matrix represents the secant stiffness that
relates the total strain to the total stress

σ = Dε = (1− ω)Deε.

Similarly to the theory of plasticity, a loading function f is introduced. In
the damage theory, it is natural to work in the strain space and therefore the
loading function is depending on the strain and on an additional parameter κ,
describing the evolution of the damage. Physically, κ is a scalar measure of the
largest strain level ever reached. The loading function usually has the form

f(ε, κ) = ε̃(ε)− κ,

where ε̃ is the equivalent strain, i.e., the scalar measure of the strain level.
Damage can grow only if current state reaches the boundary of elastic domain
(f = 0). This is expressed by the following loading/unloading conditions

f ≤ 0, κ̇ ≥ 0, κ̇f = 0.

It remains to link the variable κ to the damage parameter ω. As both κ and ω
grow monotonically, it is convenient to postulate an explicit evolution law

ω = g(κ).

The important advantage of this explicit formulation is that the stress corre-
sponding to the given strain can be evaluated directly, without the need to
solve the nonlinear system of equations. For the given strain, the corresponding
stress is computed simply by evaluating the current equivalent strain, updat-
ing the maximum previously reached equivalent strain value κ and the damage
parameter and reducing the effective stress according to σ = (1− ω)Deε.

This general framework for computing stresses and stiffness matrix is com-
mon for all material models of this type. Therefore, it is natural to introduce
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the base class for all isotropic-based damage models which provides the gen-
eral implementation for the stress and stiffness matrix evaluation algorithms.
The particular models then only provide their equivalent strain and damage
evolution law definitions. The base class only declares the virtual services for
computing equivalent strain and corresponding damage. The implementation
of common services uses these virtual functions, but they are only declared at
IsotropicDamageMaterial class level and have to be implemented by the derived
classes.

Together with the material model, the corresponding status has to be de-
fined, containing all necessary history variables. For the isotropic-based damage
models, the only history variable is the value of the largest strain level ever
reached (κ). In addition, the corresponding damage level ω will be stored. This
is not necessary because damage can be always computed from corresponding
κ. The IsotropicDamageMaterialStatus class is derived from StructuralMateri-
alStatus class. The base class represents the base material status class for all
structural statuses. At StructuralMaterialStatus level, the attributes common
to all “structural analysis” material models - the strain and stress vectors (both
the temporary and non-temporary) are introduced. The corresponding services
for accessing, setting, initializing, and updating these attributes are provided.
Therefore, only the κ and ω parameters are introduced (both the temporary and
non-temporary). The corresponding services for manipulating these attributes
are added and services for context initialization, update, and store/restore op-
erations are overloaded, to handle the history parameters properly.
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