
Object Oriented

Finite Element Modeling∗

Bořek Patzák

Czech Technical University
Faculty of Civil Engineering

Department of Structural Mechanics
Thákurova 7, 166 29 Prague, Czech Republic

November 30, 2010

Key words: Finite Element Modeling, Object Oriented Analysis

Abstract

This paper presents a general structure of an object oriented finite
element code. The aim of the described object oriented environment is
not only to be an efficient and robust tool for FEM computations, but
also to provide a modular and extensible tool for new developments. The
program structure has been designed to meet all natural requirements for
modularity, extensibility, and robustness. Special attention is put on the
description of the representations and interfaces of the material model and
the analysis module. For reader convenience, a short introduction to Ob-
ject Oriented Analysis is given. The program structure design presented
has been successfully implemented.

1 Introduction

During the last decades engineering community has been facing a rapid
development in many related fields. Also the recent progress in computer
technology allows the practical use of many advanced, complex, and large
FE models. Due to these facts, the necessity for a suitable FEM computa-
tion environment is evident. An analyst or researcher naturally wants to
work with code which is easily extensible towards future demands, easily
maintainable, but still efficient and portable across many platforms.

Generally, there are two main groups of existing programs. The first
group consists of commercial products available on the market. These
codes are offering wide functionality including many different analysis
procedures, wide element libraries and are often provided with pre- and
post- processing tools. Despite these facts, these packages are designated
mainly to end users in design offices, providing excellent tools for stan-
dard types of analyses. The main disadvantage is their very limited or

∗When referencing this paper, please cite the following: Patzák, B.: Object oriented finite
element modeling, ACTA POLYTECHNICA, 39(2/1999):99-113, 1999. ISSN 1210-2709

1

http://mech.fsv.cvut.cz/~bp/bp.html


even impossible extensibility. Usually a set of user defined subroutines
is provided. By using these subroutines, the addition of a new element
type or the introduction of a new constitutive laws is theoretically possi-
ble. Nevertheless, the extension to a new analysis type or the extension
to a principally new material model with required history variables can
be hardly possible. Therefore, these programs are oriented towards prac-
tical computations, rather than to the research engineering community.
The second group of available programs is represented by programs dis-
tributed with source codes. In-house programs as well as many free- and
share-ware programs were analysed and tested to determine whether they
fulfilled required needs. They usually proved to be entirely inmodular or
very poorly modular. Extensibility, primarily of interest to a researcher,
is enabled due to existence of source code, but it is extremely time con-
suming and error prone due to unclear data structure or bad program
design. This is further complicated by missing or insufficient documenta-
tion. Also, as a consequence of poor modularity, the distributed software
development within a team is hardly possible.

Due to the aforementioned facts, a new general FEM kernel has been
designed and developed with several modules being built on its top. The
kernel provides the basic common services and data structures. Particu-
lar modules are designed to implement analysis specific parts by extend-
ing and specializing the basic kernel structure represented by its services
and data structures. The module must provide problem formulation, nu-
merical algorithms, finite elements and other necessary components for a
specific analysis. At the very beginning, the following project goals were
formulated:

• The most important requirement from the research community point
of view, was to achieve an open nature of the kernel library - exten-
sibility in a broad sense. The kernel has to be extensible in any
“direction”. Thus the possibility of adding new element types, new
material models with any type and number of internal history vari-
ables, new boundary conditions or new analysis modules, must be a
matter of course.

• The program structure must comply with a modular design. This is
a very important feature to support team work.

• The code must be easily modifiable and maintainable. The impor-
tant and natural requirement for a program is its portability over
available and future platforms.

• Although extensibility and easy maintenance were of primary con-
cern, the last but not least item — the efficiency is also a very
important property, mainly from the viewpoint of the end user. We
expected to obtain computational performance similar to programs
written in Fortran or C. The minor decrease in speed is not impor-
tant, if we realize the progress in computer hardware technology.

2 Object Oriented Analysis

A short outline of Object Oriented Analysis (OOA) will be given here, to
help the reader to understand the basic principles of the subject. The basic
terms and principles necessary for understanding of program structure,
used later in this paper, will be mentioned and explained. Object Oriented
Analysis is based on the uniform application of principles for managing
complexity (see Ref. [1]).

2



- Abstraction (Procedural and data abstraction): The principle of ig-
noring those aspects of a subject that are not relevant to the current
purpose in order to concentrate more on those that are relevant.

- Procedural abstraction: The principle that any operation that achieves
a well defined effect can be treated by its users as a single entity,
despite the fact that the operation may be actually achieved by some
sequence of low level operations. Procedural abstraction is widely
supported by existing programming languages; procedures and func-
tions are examples of procedural abstraction.

- Data abstraction: The principle of defining a new data type in terms
of the operations that apply to an object of that type, with the
constraint that the values of such an object can be modified and
observed only by the use of the operations. When applying data ab-
straction, an analyst must define attributes and services that exclu-
sively manipulate these attributes. The only way, to get an attribute
is via these services.

- Inheritance: The mechanism for expressing similarity between data
types, making common attributes and services explicit within a class
hierarchy. Inheritance allows an analyst to define common attributes
and services only once, as well as to specialize and extend those
attributes and services into specific derived classes. It expresses
generalization specialization between data types.

- Association: Expresses the relationship, the state of being associ-
ated.

- Communication with messages: Models the processing dependency.
It represents the need for services necessary to fulfill object respon-
sibility.

In an overall approach, OOA consists of five major activities: finding
classes and objects, identifying structures, identifying subjects, defining
attributes, and defining services. In order to present the general structure
of a developed program, a graphical form will be used. Particularly, the
Coad-Yourdon methodology will be used (see Ref. [1]). It introduces the
following basic elements and mutual relations between them (see Fig. 1.):

• An Object is an abstraction of something in a problem domain, re-
flecting the capabilities of a system to keep information about it,
interact with it, or both. It is also an encapsulation of attribute
values and their exclusive services. A Synonym for object is an in-
stance.

• Class: A description of one or more objects with a uniform set of
attributes and services, including a description of how to create a
new object in a class.

• Class & object: A term meaning class and the objects in that class.

• Attributes describe the values (state) of the object, to be exclusively
manipulated by the services of that object. The attributes and ex-
clusive services on those attributes are assumed as an intrinsic whole.
If another part of a system (another object) needs to access or other-
wise manipulate the values in an object, it must do so by specifying a
message connection corresponding to service defined for that object.

• Services: The central issue in defining services is to define required
behavior and necessary communication.

3



• Generalization specialization structure may be viewed as a layout
for distinguishing between classes. Less formally, a Genspec struc-
ture can be thought to be an expression for “is a” or “is a kind
of” relation. Within a Genspec structure inheritance applies. An
example is the generalization class Vehicle and specialization class
Truck vehicle. Genspec structure is represented by generalization
class and by specialization class with a line drawn between them. A
semi-circle mark distinguishes classes as forming Genspec structure.
The notation is directional — it uses a line drawn outward from
semi-circle midpoint to point to the generalization (see Fig. 1.).

• Whole part structure groups together class&objects based upon whole-
part meaning. This structure is represented by a whole object and
by a part object, with a line drawn between them. A triangle mark
distinguishes the object as forming the whole part structure. The
notation is again directional. Each end of whole part structure line
is marked with amount or range, indicating the number of parts
that the whole may have and vice versa, at any given moment in
time. The alternative modeling is to use an instance connection. It
is weaker in meaning, but it still captures the mapping (see Fig. 1.).

• Attributes depict the object state. Instance connections add to this
information, which required mappings are needed by an object to
fulfill its responsibilities. Instance connections model association. A
connection is represented by a line drawn between objects. Each
object can again have an amount or range marks on each of its
instance connections, reflecting constraints with other objects.

• A message connection is a mapping of one object to another (or
occasionally to a class, to create a new object), in which a sender
sends a message to a receiver, to get some processing done. The
needed processing is named in the sender’s service specification, and
is defined in the receiver’s service specification. The benefit of such
a discipline is that it creates a very narrow interface between the
strong encapsulation and exclusive services on those data. In effect,
a message connection combines event-response and data flow per-
spectives. Each message represents values sent within the context of
particular service need, and a response received as result.

3 General Structure

General structure is shown in Fig. 2. First focus attention on the class
& object Domain. Generally speaking, it contains the problem descrip-
tion, or if the program runs in parallel, then it contains the description
of the domain associated with a particular processor or thread of execu-
tion. Domain contains and manages lists of degree of freedom (DOF)
managers, elements, boundary conditions, cross sections, and materials -
these describe the geometry of problem, its constitutive properties, and
applied boundary conditions. Services for accessing each of these objects
are provided. Domain class & object contains also several Engineering
models. These objects represent the type of analysis, which may be in-
voked. Domain class & object provides services for reading input files,
and instantiating corresponding components accordingly. Domain, after
reading problem description and performing necessary consistency checks,
starts computation by sending appropriate message to Engng model.

4



Engng model and Numerical method interfaces, shown schematically
in top-left frame, will be explained in section 4 The classes & objects in the
left-bottom frame represent the element, material model, and cross section
abstractions. Because of their principal importance, a special section 5
will be devoted to a detailed explanation of this frame.

DOF is an abstraction for a single degree of freedom (DOF). It main-
tains its physical meaning and associated equation number. DOF is the
attribute of one DofManager. The DofManager manages the collec-
tion of DOFs. A typical derived class is class Node, representing a node
in a finite element mesh. Boundary condition and Initial condition
are abstractions of boundary and initial conditions. They are attributes
of Domain and are associated with one or more DOFs. The abstract
class Load, derived from base Boundary condition class, is an abstrac-
tion for load. It is an attribute of Domain and can be associated with
several dof managers or elements, according to the type. The class de-
clares the basic services provided by all derived classes. Derived classes
declare specific load type dependent services and implement all necessary
services.

4 Engineering model — Numerical Method
Interface

Engng model is an abstraction for the type of analysis, that will be
done. Base class offers basic general services for assembling characteristic
components and services for starting the solution step and its termination.
Derived classes “know” the form of governing equation and the physical
meaning of particular components. They are responsible for forming the
governing equation for each solution step, which may represent either a
time step, a load increment, or a load case, usually by summing contribu-
tions from particular elements and nodes. In order to solve the governing
equation, a suitable instance of Numerical Method class is created. En-
gng model may use different numerical methods, depending, for example,
on problem size or previous convergence. Engng model first maps its
components of the governing equation (for example stiffness matrix, load
vector) to corresponding numerical components (LHS, RHS), and then
sends a message to the appropriate numerical method to solve the prob-
lem (see Fig. 4). Engng model must also provide services for updating
its components, if this is necessary. These are used, when the Numerical
Method instance needs to update some components during solution (for
example in the Newton Raphson algorithm for the solution of non-linear
equations, stiffness has to be updated after each iteration). Similarly, a
high-level numerical method may use the services of another low-level nu-
merical method (solver for non-linear system of equations uses another
linear solver for linearized problem). Numerical method instance may
also represent an interface to some procedure in C or Fortran (see Fig. 4.).

One important aspect, which should be mentioned here, is that all
numerical methods solving the same problem use the same names for
numerical components. This is important, because the situation, where
different numerical methods use different message names and parameter
ordering for the same service is avoided. This is necessary, otherwise
any future introduction of numerical method could require some neces-
sary code changes. However, by using the proposed compulsory mapping
of each component separately to compulsory (and common) component

5



names, it is possible to create a new instance of Numerical method, and
leaving the whole engineering model code including mapping unchanged.

This concept is further enhanced by introduction of base abstract class
for all sparse matrices. This class only declares the basic required services
provided by all sparse matrices (like multiplication by a vector, possible
factorization, etc). The implementation is left on derived classes. Numer-
ical methods are then implemented only using basic services declared by
Sparse Matrix class. Thus, numerical methods class instances will work
with any sparse matrix class, even those added in the future, without
changing any code, because all derived classes of Sparse Matrix class
implement the same interface.

4.1 Program & Data Flow

The program flow in the engineering model — numerical method frame is
explained in Fig. 3. After Domain reads the input file with the problem
description, it starts computation by invoking SolveYourself service of En-
gng model class. In this example a non-linear static problem analysis is
performed. The corresponding Engng model class solves the whole prob-
lem as a series of load increments. Therefore, for each step of computation,
a SolveYourselfAt service is invoked. For the first step, the reference load
vector is formed from element and nodal contributions, so these compo-
nents are accessed from corresponding domain using its services. Then,
for each solution step, the stiffness matrix is formed and particular com-
ponents of the governing equation are mapped to the numerical method
components. Here, an CALM instance of Numerical Method class is
being used. For solution of a linearized problem, the CALM uses another
instance of Numerical method class - here named Linear solver. After
components are mapped and a solution is obtained, the CALM checks
convergence. It asks Engng model to compute (update) the vector of
real nodal forces according to the solution reached, and checks conver-
gence. If convergence is reached, the program control returns to Engng
model and the solution step is then terminated (stress updates and nec-
essary printing) and the solution continues with next step. If prescribed
accuracy is not reached, the stiffness matrix can be updated by suitable
engng model service and iteration continues.

To summarise, the natural independence of problem formulation, nu-
merical solution of problem, and data storage format have been obtained,
which leads to a modular and extensible structure of the engineering model
- numerical method frame.

5 Material — Element Frame

As already mentioned, in Fig. 2 the material-element frame is schemati-
cally shown. In this frame the following base classes & objects are intro-
duced:

• Class Element, which is the abstraction of a finite element. It
declares common general services, provided by all elements. Derived
classes are the base classes for specific analysis types (structural
analysis, thermal analysis). They declare and implement necessary
services for specific analysis.

• Integration point class & object: It is an abstraction for the inte-
gration point of the finite element. It maintains its coordinates and

6



integration weight. Any integration point can generally contain any
number of other integration points - called slaves. An Integration
point containing slaves is called master. Slaves are, for example,
introduced by a layered cross section model, where they represent
integration points for each layer, or can be introduced at material
model level, where they may represent, for example, microplanes.
Slave integration points are hidden from elements. Integration
point also contains associated material status (the reasons for in-
troducing this feature will be explained later).

• Cross section class is an abstraction for cross section. Its main role
is to hide from an element all details concerning cross section descrip-
tion and implementation. By cross section description we mean for
example an integral cross section model, layered cross section model
or fibered model. Elements do not communicate directly with ma-
terial, instead they always use Cross Section interface, which per-
forms all necessary integration over its volume and invokes necessary
material class services. Cross section interface, defined in terms
of general functions, allows the use of any cross section model, even
those added in the future, without modification of any code, because
all cross section models implement the same interface.

• Material class is shown here. It represents base class for all consti-
tutive models. Derived classes should be the base analysis-specific
classes, which declare required analysis specific services (for example
structural material class declares services for stiffness computation
and services for real stress evaluation). Again, the material analy-
sis specific interface, defined in terms of general services, allows the
use of any material model, even those added in the future, with-
out modifying any code, because all material models implement the
same interface.

One of the most important goals, which have been formulated, is ex-
tensibility. In the case of extension of the material library, the analyst is
facing a key problem. Every material model must store its unique history
parameters for every related integration point. The amount, type, and
meaning of these history variables vary for each material model. There-
fore, it is not possible to efficiently match all needs and reflect them in
integration point data structure. The suggested remedy is following:

Integration point class is equipped with the possibility to have as-
sociated Material status class. When a new material model is imple-
mented, the analyst has also to declare and implement a related material
status derived from base Material status class to this material model.
This status contains all necessary history variables and data access and
modification services. Integration point provides services for inserting
and accessing its related status. For every Integration point, corre-
sponding material creates unique copy of its related material status and
associates it with that integration point. Because Integration point is
a compulsory parameter of all messages sent to Material model objects,
a particular material model can access its related Material status from
given Integration point, and therefore can access its history variables.

In the Fig. 5, the material - element frame is depicted in more detail, al-
though it is still simplified. There is indicated simple cross section model
class hierarchy. There are two derived classes from the parent Cross
Section class: Simple cross section class representing an integral cross
section model and Layered cross section model class, representing a

7



layered cross section model implementation. At the bottom are indicated
the hierarchies of material model and associated material status represen-
tations. The program flow for an element, requesting the computation of
its real nodal forces is also indicated in Fig. 5. This is generally done by
integrating real stresses at its integration points. For each Integration
point it asks Cross section model to compute real stresses at given
integration point. In this example, Layered cross section uses the
master-slave integration point principle. Each element integration point,
here called master, contains its slaves, each representing one layer. These
slave integration points are introduced by the cross section model, and
are hidden to the element. For a given master integration point, the cross
section model performs integration over cross section volume using slaves.
Therefore each slave integration point, which is requested by the master,
uses material model class services to compute real stresses for each corre-
sponding layer, passing the slave integration point as a parameter. Then
for each slave, the material model asks the given integration point for its
associated status. Having obtained reference to it, the material model
can access all its history variables through status services, and computes
results.

As an example, Fig. 6 shows specific details concerning implementa-
tion of a microplane model. A similar material interface to the previous
one can be seen. Again, there are element, material, and integration
point classes. The general Microplane material class, which is derived
from Material model class, is the base class for all microplane models.
It defines services required from all microplane models and implements
general common services (for example stress homogenization). Other ma-
terial model dependent services are left to be implemented by derived
classes (for example service for computing real microplane stresses). For
convenience, a Microplane class has been added. This class is an ab-
straction for microplane. Since microplane can be generally considered
as an integration point, it was natural to derive this class from the In-
tegration point class. A few services have been added, like returning
microplane normal or its projection tensors. Further, the implementa-
tion of the microplane model — MicroplaneModel1, which implements
services declared by the base Microplane Model class, is introduced.
Together with this class the related MicroplaneModel1 status is de-
fined to store all necessary history variables. Two important notes should
be made here:

- Integration point on the macro level is represented by the Integra-
tion point class. Micro level is represented by Microplane objects,
introduced by microplane model for each master integration point.

- Since Microplane, is derived from the Integration point class, it
inherits its capability to contain reference to related material status.

The sketched program flow describes the situation, when real stresses
are requested from the material model. When the corresponding service
of general Microplane model class for stress homogenization is invoked,
again with master integration point as a parameter (remember, integration
point is a compulsory parameter of all material model services). Homog-
enization results in integration over all microplanes, therefore the corre-
sponding microplane is extracted from the master integration point, and
GiveRealMicroplaneStress service is invoked, with the corresponding Mi-
croplane instance as a parameter. MicroplaneModel1 then extracts its
associated status from microplane and computes results using its history

8



variables from current microplane.
To summarize, the described program structure supports extension

towards any material model with arbitrary history variables, and towards
any cross section model, without modification of any part of the code.

Figure 1: Coad Yourdon methodology.

9



Figure 2: General Structure.

10



Figure 3: Engng model - Numerical method Interface.

11



Figure 4: Engng model - Numerical method Interface.

12



Figure 5: Element-material frame structure.

13



Figure 6: Example - Microplane model implementation.

14



6 Implementation

The proposed program structure has been successfully implemented. The
C++ programming language has been chosen due to its implementation
efficiency, portability, and availability. Originally, this tool has been in-
tended to support material model development. Nevertheless, the devel-
oped tool is intensively used as computational tool, thanks to availability
of implemented structural analysis module. This module covers usual lin-
ear and non-linear static and dynamic problem types. Large element and
material libraries are provided, as well as an interface to a mesh gener-
ator and the possibility of graphical post-processing in X-windows. The
attained computational efficiency is comparable to existing codes. Cur-
rently, effort is devoted to parallel processing support as well as to the
development of new modules.

7 Conclusions

To summarize, a general object oriented environment for finite element
computations has been developed. The described general structure leads
to modular and extensible code design. Special attention has been focused
on important aspects of material library interface design, analysis type and
numerical method representations, and corresponding interface design.
Successful implementation using C++ programming language verifies the
designed structure and provides a robust computational tool for finite
element modeling.

Acknowledgments

This work was supported by the Grant Agency of the Czech Republic -
Project No.: 103/97/P106.

References

[1] COAD, P. and YOURDON, E.: Object-Oriented Analysis, Prentice-
Hall, 1991.

[2] KERNINGHAM, B.W. and RITCHIE, D.M.: The C Programming
Language, Prentice-Hall, 1978.

[3] PATZÁK, B: Výpočetńı modely pro beton, PhD thesis, in Czech, FSv
ČVUT 1996.

[4] STROUSTRUP, B.: The C++ Programming Language - 3rd ed,
Addison-Wesley, 1997.

[5] ZIMMERMANN, T., DUBOIS-PELERIN, Y., and BOMME, P.:
Object-oriented finite element programming: I. Governing principles,
Comp. Meth. in Appl. Mech. Engng., 98(3), 291-303, 1992.

15


	Introduction
	Object Oriented Analysis
	General Structure
	Engineering model — Numerical Method Interface
	Program & Data Flow

	Material — Element Frame
	Implementation
	Conclusions

