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1 Introduction

This report describes in details the format and structure of OOFEM text input
file. Input file can be created by any available text editor or can be generated
by some conversion program or by some FEM pre-processor.

Some parts of this document are related parallel version of the code (POOFEM).
These parts are distinguished by typing the text in sans serif font family. In a parallel
mode a set of input files must be provided, each one for particular process and related
partition. The input file corresponding to some partition is called partition input
file. Its name is composed from two parts. The fist part (referred as base name)
is user-defined. The second part (called partition name), divided from first part by
full-stop, is particular partition rank number. The partitions are numbered from
zero. It is assumed, that all partitions input files have the same base name. The
partition name is appended automatically to input file name, user provides only base
name on input. On the other hand, the partition name is not appended to output
file name, as specified in output file record (see section 4).

The parallel version requires the unique global numbering for dof managers
(nodes) and elements. The global numbering is necessary to link partitions together.
However, the dof managers and optionally elements at interpartion boundaries,
should be explicitly marked, in order to distinguish different type of relations between
their remote counterparts (see further).

2 Running the code

The program may be executed by typing
oofem [option [parameter]] ...

on the command line prompt with the following command line options:

• -f string
oofem input file name, if not present, program interactively reads this
parameter.

• -r int
Restarts the analysis from given solution step. The corresponding context
file (*.osf) must exist.

• -rn
Turns on the profile renumbering. Default is off. It will not work in
parallel mode.

• -ar int
Restarts the adaptive computation from given solution step. Requires the
corresponding context file (*.osf) and domain input file (*.din) to exists.
The domain input file describes the new mesh, its syntax is identical to
syntax of input file, but it does not contains the output file record, job
description record and analysis record.

• -qo string
Redirect the standard output stream (stdout) to given file.

• -qe string
Redirect standard error stream (stderr) to given file.
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• -context
Forces the creation of context file for each solution step.

The parallel version uses the MPI (Message Passing Interface) standard for
message-passing communication. Thus, to execute POOFEM program, users must
know the procedure for beginning MPI jobs on their selected computer system(s).
For instance, when using the MPICH implementation of MPI and many others, the
following command initiates a program that uses eight processors:

mpirun -np 8 poofem program options

3 Syntax and general rules

Input file is created by records. In the current implementation, the particular
record is represented by one line in input file. The order of records in file is
compulsory, and is following

1. output file record, see section 4,

2. job description record, see section 5,

3. analysis record, see section 6,

4. domain record, see section 7,

5. output manager record, see section 7.1,

6. components size record, see section 7.2,

7. node & element-side record(s), see section 7.3,

8. element record(s), see section 7.4,

9. cross section record(s), see section 7.5,

10. material type record(s), see section 7.6,

11. nonlocal barriers record(s), see section 7.7,

12. load, boundary conditions record(s), see section 7.8,

13. initial conditions record(s), see section 7.9,

14. time functions record(s), see section 7.10.

15. optional xfem manager and associated record(s), see section 7.11

When line begins with ’#’ character, then it is skipped by parser and provide
a way, how to include comments inside input file.

Records contain many fields, each field is characterized by keyword and its
associated field value. Some keywords have no field values. Except the first field,
the order of remaining fields in record is optional. There are several exceptions,
which will be described in particular sections. The type of field value is spe-
cific to keyword. General format of field, characterized by keyword “Keyword”
with corresponding value (marked as #) of type “type” is Keyword(type) #. If
keyword is variable, depending on entity type which is described by particular
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record, then the keyword is preceded by star. We call such keyword as entity
keyword (For example keyword, which describes element type). The possible
substitutions for entity keyword are typed using Typewriter font family. Often,
many fields are specific to particular entity keyword. Then we describe general
format of record without these specific fields and we describe them in entity
keyword specific part of record description. Sometimes, there are fields without
keywords. These are usually compulsory, with fixed position in record. Their
occurrence is described using so called named values. The format of named
value is “(name#)(type)”, where a value of required type should be substituted.

In a special case of analysis record, the input record can be followed by op-
tional meta-step input records (see section 6). Then certain fields originally in
analysis record should appear in meta-step record instead. This is marked by
adding “M” superscript to keyword. Then the field format is KeywordM (type) #.

As already mentioned, each field value is typed. The possible types are:

• in - integer number.

• rn - real number.

• ch - character (usually for unknowns description (’d’ for displacement un-
known, ’t’ for temperature unknown, ...).

• ia - integer array, format of integer array is “size val(1) ... val(size)”, where
size, val(1),...,val(size) are integer numbers. Values are separated by one
or more spaces.

• ra - real array, format of real array is “size val(1) ... val(size)”, where size
is integer number and val(1), ..., val(size) are real numbers. Values are
separated by one or more spaces;

• rm - real matrix, format of real matrix is
“rows columns {val(1,1) val(1,2) ...; val(2,1) ...}”, where “rows” and “columns”
are integer numbers and val(1,1), ..., are real numbers. Columns are seper-
ated by space or comma and lines by semicolon.

• dc - dictionary. Dictionary consist of pairs, each pair has key (character
type) and its associated value (integer type). Format of dictionary is
“size key(1) val(1) ... key(size) val(size)”, where size is integer number,
key(1),...,key(size) are single character values, and val(1), ..., val(size) are
real numbers. Values are separated by one or more spaces;

• rl - range list. Range list syntax is { number1 .. numberN (start1 end1)
(start2 end2)}. The enclosing brackets are compulsory. The range list
represent list of integer values. Single values can be specified using single
values (number1, .., NumberN). The range of values (all numbers from
startI to endI including startI and endI can be specified using range value
in the form (startI endI). The range is described using its start and end
values enclosed in parenthesis. Any number of ranges and single values
can be used to specify range list.

• et - entity type. For example, it describes the finite element type. Possible
type values are mentioned in specific sections.
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• s - character string. The string have to be enclosed in quotes (””) following
after corresponding keyword.

• expr - function expression. The expression have to be enclosed in quotes
(””). The expression is evaluated by internal parser and represent mathe-
matical expressions as a function of certain variables. The variable names
and meaning are described in specific sections. The usual arithmetic op-
erators like -,+,*,/ are supported and their evaluation order is taken into
account. The evaluation order can be changed using parenthesis. Several
built-in functions are supported (sqrt, sin, cos, tan, atan, asin and acos) -
these must be typed using lowercase letters and their arguments must be
enclosed in parenthesis.

The general format of record is

keyword1(type) # [keyword2(type) #] \
... \
[keywordXX(type) #]

The keywords and their values are separated by one or more spaces. Please
note, that a single record cooresponds to one input line in input file. If any
keyword or field value is enclosed within angle brackets 〈 〉 then it is related to
parallel version of oofem is not available in sequential version. When some field is
enclosed in brackets [ ], then it’s use is optional and often overwrites the default
behavior or adds additional (but optional) information or property (for example adds
a loading to node).

4 Output file record

This record has no keywords and contains character string, which describes the
path to output file. If file with the same name exists, it will be overwritten.

5 Job description record

This record has no keywords and contains character string, which describes the
job. This description will appear in the output file.

6 Analysis record

This record describes the type of analysis, which should be performed. The
general format of this record can be specified in

• “standard-syntax”
*AnalysisType nsteps(in) # \

[renumber(in) #] \
attributes(string) # \
[ninitmodules(in) #] \
[nmodules(in) #] \
[nxfemman(in) #]
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• “meta step-syntax”
*AnalysisType nmsteps(in) # \

[ninitmodules(in) #] \
[nmodules(in) #] \
[nxfemman(in) #]

immediately followed by nmsteps meta step records with the following
syntax:

nsteps(in) # attributes(string) #
The nmsteps parameter determines the number of “metasteps”. The meta
step represent sequence of solution steps with common attributes. There
is expected to be nmsteps subsequent metastep records. The meaning of
meta step record parameters (or analysis record parameters in “standard
syntax”) is following:

– nsteps - determines number of subsequent solution steps within me-
tastep. Nonzero value of optional parameter renumber turns on the
equation renumbering to optimize the profile of characteristic ma-
trix (uses Sloan algorithm). By default, profile optimization is not
performed. It will not work in parallel mode.

– attributes - contains the metastep related attributes of analysis (and
solver), which are valid for corresponding solution steps within meta
step. If used in standard syntax, the attributes are valid for all
solution step.

– ninitmodules - number of initialization module records for given prob-
lem. The initialization modules are specified after meta step section
(or after analysis record, if no metasteps are present). Initialization
modules allow to initialize the state variables by values previously
computed by external software. The available initialization modules
are described in section 6.23.

– nmodules - number of export module records for given problem. The
export modules are specified after initialization modules. Export
modules allow to export computed data into external software for
postprocessing. The available export modules are described in section
6.24.

– nxfemman - number of xfem managers. Xfem managers wrap eX-
tended Finite Element (xfem) data: they manage the list of enrich-
ment items and associated enrichment functions, and their geometry
representation. The number of xfem managers required is problem
dependent, typically a single xfem manager is used. The syntax of
xfem manager record and related records is described in section 7.11.

Not all of analysis types support the metastep syntax, and if not mentioned,
the standard-syntax is expected. Currently, supported analysis types are

• Linear static analysis, see section 6.1,

• Eigen value dynamic, see section 6.3,

• Direct explicit nonlinear dynamics, see section 6.4,

• Direct explicit (linear) dynamics, see section 6.5,
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• Implicit linear dynamic, see section 6.6,

• Incremental linear static problem, see section 6.7,

• Non-linear static analysis, see section 6.8.

6.1 Linear static analysis

LinearStatic nsteps(in) # \
[renumber(in) #] \
[sparselinsolverparams() #] \
[sparselinsolverparams() #]

Linear static analysis. Parameter nsteps indicates the number of loading
cases. Series of loading cases is maintained as sequence of time-steps. For
each load case an auxiliary time-step is generated with time equal to load case
number. Load vectors for each load case are formed as load vectors at this
auxiliary time.

Nonzero value of optional parameter renumber turns on the equation renum-
bering to optimize the profile of characteristic matrix (uses Sloan algorithm).
By default, profile optimization is not performed. It will not work in parallel
mode.

The sparselinsolverparams parameter describes the sparse linear solver at-
tributes and is explained in section 6.17. Can be used in parallel mode. The input
record must be the same for all processors. At present, parallel version requires
PETSc module.

6.2 LinearStability

LinearStability nroot(in) # \
[renumber(in) #] \
rtolv(rn) # \
[eigensolverparams() #]

Solves linear stability problem. Only first nroot smallest eigenvalues and cor-
responding eigenvectors will be computed. Relative convergence tolerance is
specified using rtolv parameter.

Nonzero value of optional parameter renumber turns on the equation renum-
bering to optimize the profile of characteristic matrix (uses Sloan algorithm).
By default, profile optimization is not performed. It will not work in parallel
mode.

The eigensolverparams parameter describes the sparse linear solver attributes
and is explained in section 6.18. Can be used in parallel mode. The input record
must be the same for all processors. Parallel version requires PETSc and SLEPc
modules.

6.3 EigenValueDynamic

EigenValueDynamic nroot(in) # \
[renumber(in) #] \
rtolv(rn) # \
[eigensolverparams() #]
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Represents the eigen value dynamic analysis. Only nroot smallest eigen-
values and corresponding eigenvectors will be computed. Relative convergence
criteria is governed using rtolv parameter. Nonzero value of optional parameter
renumber turns on the equation renumbering to optimize the profile of charac-
teristic matrix (uses Sloan algorithm). By default, profile optimization is not
performed. It will not work in parallel mode.

The eigensolverparams parameter describes the sparse linear solver attributes
and is explained in section 6.18. Can be used in parallel mode. The input record
must be the same for all processors. Parallel version requires PETSc and SLEPc
modules.

6.4 NlDEIDynamic

NlDEIDynamic nsteps(in) # \
[renumber(in) #] \
dumpcoef(rn) # \
[deltaT(rn) #]

Represents the direct explicit nonlinear dynamic integration. The central
difference method with diagonal mass matrix is used, damping matrix is as-
sumed to be proportional to mass matrix, C = dumpcoef ∗M , where M is
diagonal mass matrix. deltaT is time step length used for integration, which
may be reduced by program in order to satisfy solution stability conditions. Pa-
rameter nsteps specifies how many time steps will be analyzed. Nonzero value
of optional parameter renumber turns on the equation renumbering to optimize
the profile of characteristic matrix (uses Sloan algorithm). By default, profile
optimization is not performed. It will not work in parallel mode.

〈PNlDEIDynamic〉 〈nsteps(in) #〉 \
〈dumpcoef(rn) #〉 \
〈[deltaT(rn) #]〉 \
〈*commode〉 \
〈[nonlocalext() #]〉

Represents the parallel direct explicit nonlinear dynamic integration. The central
difference method with diagonal mass matrix is used, damping matrix is assumed to
be proportional to mass matrix, C = dumpcoef ∗M , where M is diagonal mass
matrix. deltaT is time step length used for integration, which may be reduced by
program in order to satisfy solution stability conditions. Parameter nsteps specifies
how many time steps will be analyzed. The 〈*commode〉 keyword can be one
from following:

• nodecutmode - indicates the node cut partitioning scheme is used. The
cut is led along element edges or surfaces (see figures 5, 6, and 7).

• elementcutmode - the element cut partitioning is used. The partitioning
cut led across the element edges or surfaces (see figures 8 and 9).

The nonlocalext turns on the nonlocal constitutive extension. The extension con-
siders a band of remote elements involved in computation of nonlocal variables (see
fig. 7 illustrating this approach for node-cut partitioning).
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6.5 DEIDynamic

DEIDynamic nsteps(in) # \
dumpcoef(rn) # \
[deltaT(rn) #]

Represent the linear explicit integration scheme for dynamic problem solu-
tion. The central difference method with diagonal mass matrix is used, damp-
ing matrix is assumed to be proportional to mass matrix, C = dumpcoef ∗M ,
where M is diagonal mass matrix. deltaT is time step length used for integra-
tion, which may be reduced by program in order to satisfy solution stability
conditions. Parameter nsteps specifies how many time steps will be analyzed.

6.6 DIIDynamic

DIIDynamic nsteps(in) # \
[renumber(in) #] \
deltaT(rn) # \
alpha(rn) # \
beta(rn) # \
Psi(rn) #

Represents direct implicit integration of linear dynamic problems. Damping
is modeled as Rayleigh damping (c = alpha ∗M + beta ∗ K). Parameter
Psi determines integration method used, forPsi = 1 the Newmark and for Psi
≥ 1.37 the Wilson method will be used. Parameter deltaT is required time
integration step length. Nonzero value of optional parameter renumber turns on
the equation renumbering to optimize the profile of characteristic matrix (uses
Sloan algorithm). By default, profile optimization is not performed. It will not
work in parallel mode.

6.7 IncrementalLinearStatic

IncrLinearStatic endOfTimeOfInterest(rn) # \
prescribedTimes(ra) # \
[renumber(in) #]

Represents incremental linear static problem. The problem is solved as
series of linear solutions and is intended to be used for solving linear creep
problems or incremental perfect plasticity. Nonzero value of optional parameter
renumber turns on the equation renumbering to optimize the profile of charac-
teristic matrix (uses Sloan algorithm). By default, profile optimization is not
performed. It will not work in parallel mode.

Supports the changes of static scheme (applying, removing and changing
boundary conditions) during the analysis.

Response is computed in times defined by prescribedTimes array. These
times should include times, when generally the boundary conditions are chang-
ing, and in other times of interest. (For linear creep analysis, the values should
be uniformly distributed on log-time scale, if no change in loading or boundary
conditions). The time at the end of interested is specified using endOfTime-
OfInterest parameter.
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6.8 NonLinearStatic

NonLinearStatic
Non-linear static analysis. The problem can be solved under direct load or dis-
placement control, indirect control, or by their arbitrary combination. Can be
used in parallel mode. The input record must be the same for all processors. At
present, parallel version requires PETSc module. By default all material nonlin-
earities will be included, geometrical not. To include geometrically nonlinear
effect one must specify level of non-linearity in element records. There are two
different ways, how to specify the parameters - the extended and standard syn-
tax.

6.8.1 Extended syntax

The extended syntax uses the “metastep” concept and has the following format:
NonLinearStatic [nmsteps(in) #] \

nsteps(in) # \
[renumber(in) #] \
[contextOutputStep(in) #] \
[sparselinsolverparams(string) #] \
[nonlinform(in) #] \
〈[nonlocstiff(in) #]〉 \
〈[nonlocalext() #]〉 \
〈[loadbalancing() #]〉

This record is immediately followed by metastep records with the format de-
scribed bellow. The analysis parameters have following meaning

• nmsteps - determines the number of “metasteps”, default is 1.

• nsteps - determines number of solution steps.

• Nonzero value of optional parameter renumber turns on the equation
renumbering to optimize the profile of characteristic matrix (uses Sloan
algorithm). By default, profile optimization is not performed. It will not
work in parallel mode.

• contextOutputStep - causes the context file to be created for every con-
textOutputStep-th step and when needed. Useful for postprocessing.

• The sparselinsolverparams parameter describes the sparse linear solver
attributes and is explained in section 6.17.

• nonlinform - formulation of non-linear problem. If == 1 (default), total
Lagrangian formulation in undeformed original shape is used (first-order
theory). If == 2, the equlibrated displacements are added to original ones
and updated in each time step (second-order theory).

• nonlocstiff - determines whether the tangent stiffness extension for nonlocal
models is activated. If == 0 (default) this option is not active. If == 1 the
support for nonlocal tangent stiffness is activated.

• The nonlocalext turns on the nonlocal constitutive extension. The extension
considers a band of remote elements involved in computation of nonlocal
variables (see fig. 7 illustrating this approach for node-cut partitioning).
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• The loadbalancing parameter describes the dynamic load balancing attributes
and is explained in section 6.19.

The metastep record has following general syntax:
nsteps(in) # \
[controllmode(in) #] \
[deltat(rn) #] \
[stiffmode(in) #] \
[refloadmode(in) #] \
solverParams() # \
[sparselinsolverparams(string) #] \
[donotfixload() #]

where

- controllmode - determines the type of solution control used for correspond-
ing meta step. if == 0 then indirect control will be used to control solution
process (arc-length method, default). if == 1 then direct displacement or
load control will be used (Newton-Raphson solver). In the later mode, one
can apply the prescribed load increments as well as control displacements.

- deltaT - is time step length. If not specified, it is set equal to 1,0. Each
solution step has associated the corresponding intrinsic time, at which the
loading is generated. The deltaT determines the spacing between solution
steps on time scale.

- stiffMode - If == 0 (default) then tangent stiffness will be used at new step
beginning and whenever numerical method will ask for stiffness update. If
== 1 the use of secant tangent will be forced. The secant stiffness will be
used at new step beginning and whenever numerical method will ask for
stiffness update. If == 2 then original elastic stiffness will be used during
the whole solution process.

- The refloadmode parameter determines how the reference force load vector
is obtained from given totalLoadVector and initialLoadVector. The initial-
LoadVector describes the part of loading which does not scale. Works only
for force loading, other non-force components (temperature, prescribed
displacements should always given in total values). If refLoadInputMode
is 0 (rlm total, default) then the reference incremental load vector is de-
fined as totalLoadVector assembled at given time. If refLoadInputMode
is 1 (rlm inceremental) then the reference load vector is obtained as incre-
mental load vector at given time.

- solverParams - parameters of solver. The solver type is determined using
controllmode.

• The sparselinsolverparams parameter describes the sparse linear solver
attributes and is explained in section 6.17.

- By default, reached load at the end of metastep will be maintained in
subsequent steps as fixed, non scaling load and load level will be reset to
zero. This can be changed using keyword donotfixload, which if present,
causes the loading to continue, not resetting the load level. For the indirect
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control the reached loading will not be fixed, however, the new reference
loading vector will be assembled for the new metastep.

The direct solver corresponds to controllmode=1 and the Newton-Raphson
solver is used. Under the direct control, the total load vector assembled for
specific solution step represents the load level, where equilibrium is searched.
The implementation supports also displacement control - it is possible to pre-
scribe one or more displacements by applying “quasi prescribed” boundary con-
dition(s)1 The load level then represents the time, where the equilibrium has
been found. The Newton-Raphson solver parameters (solverParams) for load-
control are:

maxiter(in) # \
[minsteplength(in) #] \
[minIter(in) #] \
[manrmsteps(in) #] \
[ddm(ia) #] [ddv(ra) #] [ddltf(in) #] \
[linesearch(in) #] [lsearchamp(rn) #] \
[lsearchmaxeta(rn) #] [lsearchtol(rn) #] \
[nccdg(in) # ccdg1(ia) # ... ccdgN(ia) # ] \
rtolv() # [rtolf() # rtold() # ]

where

• maxiter determines the maximum number of iterations allowed to reach
equilibrium. If equilibrium is not reached, the step length (corresponding
to time) is reduced.

• minsteplength parameter is the minimum step length allowed.

• minIter - minimum number of iterations which always proceed during the
iterative solution.

• If manrmsteps parameter is nonzero, then the modified N-R scheme is
used, with the stiffness updated after manrmsteps steps.

• ddm is array specifying the degrees of freedom, which displacements are
controlled. Let the number of these DOFs is N. The format of ddm array is
2*N dofman1 idof1 dofman2 idof2 ... dofmanN idofN, where the dofmani
is the number of i-th dof manager and idofi is the corresponding DOF
number.

• ddv is array of relative weights of controlled displacements, the size should
be equal to N. The actual value of prescribed dofs is defined as a product
of its weight and the value of load time function specified using ddltf
parameter (see below).

• ddltf number of load time function, which is used to evaluate the actual
displacements of controlled dofs.

1Hovewer, the problem does not supports the changes of static system. But it is possible to
apply direct displacement control without requiring BC applied (see nrsolver documentation).
Therefore it is possible to combine direct displacement control with direct load control or
indirect control.
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• linesearch nonzero value turns on line search algorithm. The lsearchtol de-
fines tolerance (default value is 0.8), amplification factor can be specified
using lsearchamp parameter (should be in interval (1, 10)), and parame-
ter lsearchmaxeta defines maximum limit on the length of iterative step
(allowed range is (1.5, 15)).

• nccdg allows to define one or more DOF groups, that are used for evalua-
tion of convergence criteria. Each DOF is checked if it is a member of par-
ticular group and in this case its contribution is taken into account when
evaluating the convergence criteria for that group. By default, if nccdg is
not specified, one group containing all DOF types is created. The value of
nccdg parameter defines the number of DOF type groups. For each group,
the corresponding DOF types need to be specified using ccdg# parameter,
where ’#’ should be replaced by group number (numbering starts from
1). This array contains the DofIDItem values, that identify the physical
meaning of DOFs in the group. The values and their physical meaning is
defined by DofIDItem enum type (see src/oofemlib/dofiditem.h for refer-
ence).

• rtolv determines relative convergence norm (both for displacement iter-
ative change vector and for residual unbalanced force vector). Option-
ally, the rtolf and rtold parameters can be used to define independent
relative convergence crteria for unbalanced forces and displacement iter-
ative change. If the default convergence criteria is used, the parameters
rtolv,rtolf, and rtold are real values. If the convergence criteria DOF groups
are used (see bellow the description of nccdg parameter) then they should
be specified as real valued arrays of nccdg size, and individual values define
relative convergence criteria for each individual dof group.

The indirect solver corresponds to controllmode=0 and the CALM solver is
used. The value of reference load vector is determined by refloadmode parameter
mentioned above at the first step of each metastep. However, the user must
ensure, that the same value of reference load vector could be obtained for all
solution steps of particular metastep (this is necessary for restart and adaptivity
to work). The corresponding meta step solver parameters (solverParams) are:

Psi(rn) # \
MaxIter(in) # \
stepLength(rn) # \
[minStepLength(in) #] \
[initialStepLength(rn) #] \
[forcedInitialStepLength(rn) #] \
[reqIterations(in) #] \
[minIter(in) #] \
[manrmsteps(in) #] \
[hpcmode(in) #] [hpc(ia) #] [hpcw(ia) #] \
[linesearch(in) #] [lsearchamp(rn) #] \
[lsearchmaxeta(rn) #] [lsearchtol(rn) #] \
[nccdg(in) # ccdg1(ia) # ... ccdgN(ia) #] \
rtolv() # [rtolf() # rtold() # ]

where
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• Psi - CALM Ψ control parameter. For Ψ = 0 displacement control is
applied. For nonzero values the load control applies together with dis-
placement control (ALM). For large Ψ load control apply.

• MaxIter - determines the maximum number of iteration allowed to reach
equilibrium state. If this limit is reached, restart follows with smaller step
length.

• stepLength - determines the maximum value of arc-length (step length).

• minStepLength - minimum step length. The step length will never be
smaller. If convergence problems are encountered and step length cannot
be decreased, computation terminates.

• initialsteplength - determines the initial step length (the arc-length). If not
provided, the maximum step length (determined by stepLength parameter)
will be used as the value of initial step length.

• forcedInitialStepLength - When simulation is restarted, the last predicted
step length is used. Use forcedInitialStepLength parameter to override the
value of step length. This parameter will also override the value of initial
step length set by initialsteplength parameter.

• reqIterations - approximate number of iterations controlled by changing
the step length.

• minIter - minimum number of iterations which always proceed during
the iterative solution. reqIterations are set to be the same, MaxIter are
increased if lower.

• manrmsteps - Forces the use of accelerated Newton Raphson method,
where stiffness is updated after manrmsteps steps. By default, the modi-
fied NR method is used (no stiffness update).

• hpcmode Parameter determining the alm mode. Possible values are: 0 -
(default) full ALM with quadratic constrain and all dofs, 1 - (default, if hpc
parameter used) full ALM with quadratic constrain, taking into account
only selected dofs (see hpc param), 2 - linearized constrain in displacements
only, taking into account only selected dofs with given weight (see hpc and
hpcw parameters).

• hpc - Special parameter for Hyper-plane control, when only selected DOFS
are taken account in ALM step length condition. Important mainly for
material nonlinear problems with strong localization. This array selects
the degrees of freedom, which displacements are controlled. Let the num-
ber of these DOFs is N. The format of ddm array is 2*N dofman1 idof1
dofman2 idof2 ... dofmanN idofN, where the dofmani is the number of
i-th dof manager and idofi is the corresponding DOF number.

• hpcw - Array of dof weights in linear constraint. The dof ordering is
determined by hpc param, size of array should be N.
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• linesearch nonzero value turns on line search algorithm. The lsearchtol
defines tolerance, amplification factor can be specified using lsearchamp
parameter (should be in interval (1, 10)), and parameter lsearchmaxeta
defines maximum limit on the length of iterative step (allowed range is
(1.5, 15)).

• nccdg allows to define one or more DOF groups, that are used for evalua-
tion of convergence criteria. Each DOF is checked if it is a member of par-
ticular group and in this case its contribution is taken into account when
evaluating the convergence criteria for that group. By default, if nccdg is
not specified, one group containing all DOF types is created. The value of
nccdg parameter defines the number of DOF type groups. For each group,
the corresponding DOF types need to be specified using ccdg# parameter,
where ’#’ should be replaced by group number (numbering starts from
1). This array contains the DofIDItem values, that identify the physical
meaning of DOFs in the group. The values and their physical meaning is
defined by DofIDItem enum type (see src/oofemlib/dofiditem.h for refer-
ence).

• rtolv determines relative convergence norm (both for displacement iter-
ative change vector and for residual unbalanced force vector). Option-
ally, the rtolf and rtold parameters can be used to define independent
relative convergence crteria for unbalanced forces and displacement iter-
ative change. If the default convergence criteria is used, the parameters
rtolv,rtolf, and rtold are real values. If the convergence criteria DOF groups
are used (see bellow the description of nccdg parameter) then they should
be specified as real valued arrays of nccdg size, and individual values define
relative convergence criteria for each individual dof group.

6.8.2 Standard syntax

In this case, all parameters (for analysis as well as for the solver) are supplied in
analysis record. The default meta step is created for all solution steps required.
Then the meta step attributes are specified within analysis record. The format
of analysis record is then following

NonLinearStatic nsteps(in) # \
[nonlocstiff(in) #] \
[contextOutputStep(in) #] \
[controllmode(in) #] \
[deltat(rn) #] \
rtolv(rn) # \
[stiffmode(in) #] \
lstype(in) # \
smtype(in) # \
solverParams() # \
[nonlinform(in) #] \
〈[nonlocstiff(in) #]〉 \
〈[nonlocalext() #]〉 \
〈[loadbalancing() #]〉

The meaning of parameters is the same as for extended syntax.
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6.9 Adaptive linear static

Adaptlinearstatic nsteps(in) # \
[renumber(in) #] \
[sparselinsolverparams() #] \
[meshpackage(in) #] \
errorestimatorparams() #

Adaptive linear static analysis. Multiple loading cases are not supported. Due to
linearity of a problem, the complete reanalysis from the beginning is done after
adaptive remeshing. After first step the error is estimated, information about
required density is generated (using mesher interface) and solution terminates. If
the error criteria is not satisfied, then the new mesh and corresponding input file
is generated and new analysis should be performed until the error is acceptable.
Currently, the available error estimator for linear problems is Zienkiewicz-Zhu.
Please note, that adaptive framework requires specific functionality provided
by elements and material models. For details, see element and material model
manuals.

- Parameter nsteps indicates the number of loading cases. Should be set to
1.

- Nonzero value of optional parameter renumber turns on the equation
renumbering to optimize the profile of characteristic matrix (uses Sloan
algorithm). By default, profile optimization is not performed. It will not
work in parallel mode.

- The sparselinsolverparams parameter describes the sparse linear solver
attributes and is explained in section 6.17.

- The meshpackage parameter selects the mesh package interface, which is
used to generate information about required mesh density for new remesh-
ing. The supported interfaces are explained in section 6.22. By default,
the T3d interface is used.

- The errorerestimatorparams parameter contains the parameters of Zien-
kiewicz Zhu Error Estimator. These are described in section 6.20.

6.10 Adaptive nonlinear static

Adaptnlinearstatic Nonlinearstaticparams() # \
[equilmc(in) #] \
[renumber(in) #] \
[meshpackage(in) #] \
[eetype() #] \
errorestimatorparams() #

Represents Adaptive Non-LinearStatic problem. Solution is performed as a
series of increments (loading or displacement). The error is estimated at the
end of each load increment (after equilibrium is reached), and based on reached
error, the computation continues, or the new mesh densities are generated and
solution stops. Then the new discretization should be generated. The truly
adaptive approach is supported, so the computation can be restarted from the
last step (see section 2), solution is mapped to new mesh (separate solution
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step) and new load increment is applied. Of course, one can start the analy-
sis from the very beginning using new mesh. Currently, the available estima-
tors/indicators include only linear Zienkiewicz-Zhu estimator and scalar error
indicator. Please note, that adaptive framework requires specific functionality
provided by elements and material models. For details, see element and material
model manuals.

- Set of parameters Nonlinearstaticparams are related to nonlinear analysis.
They are described in section 6.8.

- Parameter equilmc determines, whether after mapping of primary and
internal variables to new mesh the equilibrium is restored or not before
new load increment is applied. The possible values are: 0 (default), when
no equilibrium is restored, and 1 forcing the equilibrium to be restored
before applying new step.

- The meshpackage parameter selects the mesh package interface, which is
used to generate information about required mesh density for new remesh-
ing. The supported interfaces are explained in section 6.22. By default,
the T3d interface is used.

- Parameter eetype determines the type of error estimator/indicator to be
used. The parameters errorestimatorparams represent set of parameters
corresponding to selected error estimator. For description, follow to sec-
tion 6.20.

6.11 Stationary transport problem

StationaryProblem nsteps(in) # \
[renumber(in) #] \
[sparselinsolverparams() #] \
[exportfields(ia) #]

Stationary transport problem. Series of loading cases is maintained as se-
quence of time-steps. For each load case an auxiliary time-step is generated with
time equal to load case number. Load vectors for each load case are formed
as load vectors at this auxiliary time. The sparselinsolverparams parameter
describes the sparse linear solver attributes and is explained in section 6.17.
Nonzero value of optional parameter renumber turns on the equation renumber-
ing to optimize the profile of characteristic matrix (uses Sloan algorithm). By
default, profile optimization is not performed. It will not work in parallel mode.

If the present problem is used within the context of staggered-like analysis,
the temperature field obtained by the solution can be exported and made avail-
able to any subsequent analyses. For example, temperature field obtained by
present analysis can be taken into account in subsequent mechanical analysis.
To allow this, the temperature must be “exported”. This can be done by adding
array exportfields. This array contains the field identifiers, which tell the prob-
lem to register its primary unknowns under given identifiers. See file field.h.
Then the subsequent analyses can get access to exported fields and take them
into account, if they support such feature.
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6.12 Transient transport problem - linear case

NonStationaryProblem nsteps(in) # \
[renumber(in) #] \
deltaT(rn) # \
alpha(rn) # \
[lumpedcapa() #] \
[sparselinsolverparams() #] \
[exportfields(ia) #] \
[changingProblemSize() #]

Linear implicit integration scheme for transient transport problems. The
generalized midpoint rule (sometimes called α-method) is used for time dis-
cretization, with alpha parameter, which has limits 0 ≤ α ≤ 1. For α = 0
explicit Euler forward method is obtained, for α = 0.5 implicit trapezoidal rule
is recovered, which is unconditionally stable, second-order accurate in ∆t, and
α = 1.0 yields implicit Euler backward method, which is unconditionally stable,
and first-order accurate in ∆t. deltaT is time step length used for integration,
nsteps parameter specifies number of time steps to be solved.

Nonzero value of optional parameter renumber turns on the equation renum-
bering to optimize the profile of characteristic matrix (uses Sloan algorithm).
By default, profile optimization is not performed. It will not work in parallel
mode. If lumpedcapa is set, then the stabilization of numerical algorithm us-
ing lumped capacity matrix will be used, reducing the initial oscillations. See
section 6.11 for an explanation on exportfields.

This linear transport problem supports changes in number of equations. It
is possible to impose/remove Dirichlet boundary conditions during solution.
This feature is enabled with changingProblemSize, which ensures storing solu-
tion values on nodes (DoFs) directly. If the problem does not grow/decrease
during solution, it is more efficient to use conventional solution strategy and the
parameter should not be mentioned.

Note: This problem type requires transport module and it can be used
only when this module is included in your oofem configuration.

6.13 Transient transport problem - nonlinear case

NlTransientTransportProblem nsteps(in) # \
[renumber(in) #] \
deltaT(rn) # \
alpha(rn) # \
[lumpedcapa() #] \
[nsmax(in) #] \
rtol(rn) # \
[manrmsteps(in) #] \
[sparselinsolverparams() #] \
[exportfields(ia) #] \
[changingProblemSize() #]

Implicit integration scheme for transient transport problems. The general-
ized midpoint rule (sometimes called α-method) is used for time discretization,
with alpha parameter, which has limits 0 ≤ α ≤ 1. For α = 0 explicit Euler
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forward method is obtained, for α = 0.5 implicit trapezoidal rule is recovered,
which is unconditionally stable, second-order accurate in ∆t, and α = 1.0 yields
implicit Euler backward method, which is unconditionally stable, and first-order
accurate in ∆t. See matlibmanual.pdf for solution algorithm.

deltaT is time step length used for integration, nsteps parameter specifies
number of time steps to be solved. Parameter maxiter determines the maximum
number of iterations allowed to reach equilibrium (default is 30). Norms of
residual physical quantity (heat, mass) described by solution vector and the
change of solution vector are determined in each iteration. The convergence is
reached, when the norms are less than the value given by rtol. If manrmsteps
parameter is nonzero, then the modified N-R scheme is used, with the left-hand
side matrix updated after manrmsteps steps. If lumpedcapa is set, then the
stabilization of numerical algorithm using lumped capacity matrix will be used,
reducing the initial oscillations.

Nonzero value of optional parameter renumber turns on the equation renum-
bering to optimize the profile of characteristic matrix (uses the Sloan algorithm).
By default, profile optimization is not performed. It will not work in the parallel
mode. See the Section 6.11 for an explanation on exportfields. The meaning of
changingProblemSize is given in Section 6.12.

Note: This problem type requires transport module and it can be used
only when this module is included in your oofem configuration.

6.14 Transient incompressible flow - CBS Algorithm

CBS nsteps(in) # \
[renumber(in) #] \
deltaT() # \
[theta1(in) #] \
[theta2(in) #] \
[cmflag(in) #] \
[scaleflag(in) # lscale(in) # uscale(in) # dscale(in) #] \
[lstype(in) #] [smtype(in) #]

Solves the transient incompressible flow using algorithm based on Charac-
teristics Based Split (CBS, for reference see O.C.Zienkiewics and R.L.Taylor:
The Finite Element Method, 3rd volume, Butterworth-Heinemann, 2000). At
present, only semi-implicit form of the algorithm is available and energy equa-
tion, yielding the temperature field, is not solved. Parameter nsteps determines
number of solution steps. Parameter deltaT is time step length used for inte-
gration. This time step will be automatically adjusted to satisfy integration

stability limits ∆t ≤ h
|u| and ∆t ≤ h2

2ν , if necessary. Parameters theta1 and

theta2 are integration constants, θ1, θ2 ∈< 1
2 , 1 >. If cmflag is given a nonzero

value, then consistent mass matrix will be used instead of (default) lumped one.
The characteristic equations can be solved in non-dimensional form. To

enable this, the scaleflag should have a nonzero value, and the following param-
eters should be provided: lscale, uscale, and dscale representing typical length,
velocity, and density scales.

Parameter lstype allows to select solver for linear system of equations. Pa-
rameter smtype allows to select sparse matrix storage scheme. The scheme
should be compatible with solver type. See section 6.17 for further details.
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Nonzero value of optional parameter renumber turns on the equation renum-
bering to optimize the profile of characteristic matrix (uses Sloan algorithm).
By default, profile optimization is not performed. It will not work in parallel
mode.

6.15 Transient incompressible flow
SUPG/PSPG Algorithm

SUPG nsteps(in) # \
[renumber(in) #] \
deltaT(rn) # \
rtolv(rn) # \
[atolv(rn) #] \
[stopmaxiter(in) #] \
[alpha(rn) #] \
[cmflag(in) #] \
[deltatltf(in) #] \
[miflag(in) #] \
[scaleflag(in) # lscale(in) # uscale(in) #dscale(in) #] \
[lstype(in) #] [smtype(in) #]

Solves the transient incompressible flow using stabilized formulation based
on SUPG and PSPG stabilization terms. The stabilization provides stability and
accuracy in the solution of advection-dominated problems and permits usage of
equal-order interpolation functions for velocity and pressure. Furthermore, sta-
bilized formulation significantly improves convergence rate in iterative solution
of large nonlinear systems of equations.

By changing the value α, different methods from “Generalized mid-point
family” can be chosen, i.e., Forward Euler (α = 0), Midpoint rule (α = 0.5),
Galerkin (α = 2/3), and Backward Euler (α = 1). Except the first one, all the
methods are implicit and require matrix inversion for solution. Some results
form an energy method analysis suggest unconditional stability for α ≥ 0.5 for
the generalized mid-point family. As far as accuracy is concerned, the midpoint
rule is to be generally preferred.

Parameter nsteps determines number of solution steps. Parameter deltaT
is time step length used for integration. Alternatively, the load time function
can be used to determine time step length for particular solution step. The
load time function number is determined by parameter deltatltf and its value
evaluated for solution step number should yield the step length.

Nonzero value of optional parameter renumber turns on the equation renum-
bering to optimize the profile of characteristic matrix (uses Sloan algorithm).
By default, profile optimization is not performed. It will not work in parallel
mode.

Parametrs rtolv and atolv allow to specify relative and absolute errors norms
for residual vector. The equilibrium iteration process will stopped when both
error limits are satisfied or when the number of iteration exceeds the value given
by parameter stopmaxiter.

If cmflag is given a nonzero value, then consistent mass matrix will be used
instead of (default) lumped one.

The algorithm allows to solve the flow of two immiscible fluids in fixed spatial
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domain (currently only in 2d). This can be also used for solving free surface
problems, where one of the fluids should represent air. To enable multi-fluid
analysis, user should set parameter miflag. The supported values are described
in section 6.21. Please note, that the initial distribution of reference fluid volume
should be provided as well as constitutive models for both fluids.

The characteristic equations can be solved in non-dimensional form. To
enable this, the scaleflag should have a nonzero value, and the following param-
eters should be provided: lscale, uscale, and dscale representing typical length,
velocity, and density scales.

Parameter lstype allows to select solver for linear system of equations. Pa-
rameter smtype allows to select sparse matrix storage scheme. Please note, that
the present algorithm leads to a non-symmetrical system matrix. The scheme
should be compatible with solver type. See section 6.17 for further details.

6.16 Staggered Problem

StaggeredProblem nsteps(in) # deltaT(rn) # \
prob1(s) # prob2(s) # \
[stepMultiplier(rn) #]

Represent so-called staggered analysis. This can be described as an sequence
of sub-problems, where the result of some sub-problem in the sequence can
depend on results of previous sub-problems in sequence. Typical example is
heat transfer analysis followed by mechanical analysis taking into account the
temperature field generated by the heat transfer analysis. Similar analysis can
be done when coupling moisture transport with concrete drying shrinkage.

The actual implementation supports only sequence of two sub-problems. The
sub-problems are described using sub-problem input files. The syntax of sub-
problem input file is the same as for standalone problem. The only addition
is that sub-problems should export their solution fields so that they became
available for subsequent sub-problems. See the Section 6.11.

The subproblem input files are described using prob1 and prob2 parameters,
which are strings containing a path to sub-problem input files, the prob1 contains
input file path of the first sub-problem, which runs first for each solution step,
the prob2 contains input file path of the second sub-problem.

The solution steps are generated by the master-problem (represented by
StaggeredProblem). Therefore any sub-problem time-stepping parameters are
ignored (even if they are required by sub-problem input syntax) and only master
problem parameters are relevant. deltaT is time step length used for integration,
nsteps parameter specifies number of time steps to be solved. stepMultiplier
multiplies all times with a given constant. Default is 1.

Note: This problem type is included in transport module and it can
be used only when this module is configured. Note: All material models de-
rived from StructuralMaterial base will take into account the external registered
temperature field, if provided.
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6.17 Sparse linear solver parameters

The sparselinsolverparams field has the following general syntax:
[lstypeM (in) #] \
[smtype(in) #] \
solverParamsM (string) #

where parameter lstype allows to select solver for linear system of equations.
Currently supported values are 0 (default) for direct solver (ST Direct), 1 for
Iterative Method Library (IML) solver (ST IML), 2 for Spooles direct solver,
3 for Petsc library family of solvers, and 4 for DirectSparseSolver (ST DSS).
Parameter smtype allows to select sparse matrix storage scheme. The scheme
should be compatible with solver type. Currently supported values (marked as
“id”) are summarized in table (1). The 0 value is default and selects the sym-
metric skyline (SMT Skyline). Ther possible storage formats include unsymmet-
ric skyline (SMT SkylineU), compressed column (SMT CompCol), dynamically
growing compressed column (SMT DynCompCol), symmetric compressed col-
umn (SMT SymCompCol), spooles library storage format (SMT SpoolesMtrx),
PETSc library matrix representation (SMT PetscMtrx, a sparse serial/parallel
matrix in AIJ format), and DSS compatible matrix representations (SMT DSS *).
The allowed lstype and smtype combinations are summarized in the table (1),
together with solver parameters related to specific solver.

Storage format id Sparse solver
Direct IML Spooles Petsc DSS

SMT Skyline 0 + +
SMT SkylineU 1 + +
SMT CompCol 2 +
SMT DynCompCol 3 +
SMT SymCompCol 4 +
SMT DynCompRow 5 +
SMT SpoolesMtrx 6 +
SMT PetscMtrx 7 +
SMT DSS sym LDL 8 +
SMT DSS sym LL 9 +
SMT DSS unsym LU 10 +

Table 1: Solver and stoorage scheme compatibility.

The solver parameters in solverParams depend on the solver type and are
summarized in table (2).

The stype allows to select particular iterative solver from IML library, cur-
rently supported values are 0 (default) for Conjugate-Gradient solver, 1 for
GMRES solver. Parameter lstol represents the maximum value of residual after
the final iteration and the lsiter is maximum number of iteration for iterative
solver. The precondattributes parameters contains the optional preconditioner
parameters. The lsprecond parameter determines the type of preconditioner

2User can set several run-time options, e.g., -ksp type [cg, gmres, bicg,
bcgs] -pc type [jacobi, bjacobi,none,ilu,...] -ksp monitor -ksp rtol <rtol> -ksp view
-ksp converged reason. These options will override those that are default (PETSC
KSPSetFromOptions() routine is called after any other customization routines).
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Solver type id Solver parameters
ST Direct 0
ST IML 1 [stype(in) #] lstol(rn) # lsiter(in) # lsprecond(in) #

[precondattributes(string) #]
ST Spooles 2 [msglvl(in) #] [msgfile(s) #]
ST Petsc 3 see Petsc manual, for details2

ST DSS 4

Table 2: Solver parameters.

to be used. The possible values of lsprecond together with supported storage
schemes and their descriptions are summarized in table (3).

Precond type id Compatible storage Description and parameters

IML VoidPrec 0 all No preconditioning
IML DiagPrec 1 all Diagonal preconditioning
IML ILUPrec 2 SMT CompCol Incoplete LU Decomposition

SMT DynCompCol with no fill up
IML ILUPrec 3 SMT DynCompRow Incoplete LU (ILUT) with

fillup.
The precondattributes are:
[droptol(rn) #] [partfill(in) #].
droptol dropping tolerance
partfill level of fill-up

IML ICPrec 4 SMT SymCompCol Incoplete Cholesky
SMT CompCol with no fill up

Table 3: Preconditioning summary.

6.18 Eigen value solvers

The eigensolverparams field has the following general syntax:
[stypeM (in) #] \
[smtype(in) #] \
solverParamsM (string) #

where parameter stype allows to select solver type. Parameter smtype allows
to select sparse matrix storage scheme. The scheme should be compatible with
solver type. Currently supported values of stype are summarized in table 4.

Solver type stype id solver parameters
Subspace Iteration 0 (default)
Inverse Iteration 1
SLEPc solver 2 requires “smtype 7”

see also SLEPc manual

Table 4: Eigen Solver parameters.
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6.19 Dynamic load balancing parameters

There are in general two basic factors causing load imbalance between individ-
ual subdomains: (i) one comming from application nature, such as switching
from linear to nonlinear response in certain regions or local adaptive refinment,
and (ii) external factors, caused by resourse realocation, typical for nondedi-
cated cluster environments, where indivudual processors are shared by different
applications and users, leading to time variation in allocated processing power.
The load balance recovery is achieved by repartitioning of the problem domain
and transferring the work (represented typically by finite elements) from one
subdomain to another. This section describes the structure and syntax of pa-
rameters related to dynamic load balancing. The corresponding part of analysis
record has the following general syntax:

[lbflagM (in) #] \
[forcelb1(in) #] \
[wtp(ia) #] \
[lbstep(in) #] \
[relwct(rn) #] \
[abswct(rn) #] \
[minwct(rn) #]

where the parameters have following meaning:

• lbflag, when set to nonzero value activates the dynamic load balancing.
Default value is zero.

• forcelb1 forces the load rebalancing after the first solution step, when set
to nonzero value.

• wtp allows to activate optional load balancing plugins. At present, the only
supported value is 1, that activates nonlocal plugin, necessary for nonlocal
averaging to work properly when dynamic load balancing is active.

• lbstep rebalancing, if needed, is performed only every lbstep solution step.
Default value is 1 (recover balance after every step, if necessary).

• relwcr sets relative wall-clock imbalance treshold. When achieved rela-
tive imbalance between wall clock solution time of individual processors
is greater than provided treshold, the rebalancing procedure will be acti-
vated.

• abswct sets absolute wall-clock imbalance treshold. When achieved abso-
lute imbalance between wall clock solution time of individual processors
is greater than provided treshold, the rebalancing procedure will be acti-
vated.

• minwct minimum absolute imbalance to perform relative imbalance check
using relwcr parameter, otherwise only absolute check is done. Default
value is 0.

At present, the load balancing support requires ParMETIS module to be con-
figured and compiled.
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6.20 Error estimators and indicators

The currently supported values of eetype are in table 5.

• EET SEI - Represents scalar error indicator. It indicates element error
based on the value of some suitable scalar value (for example damage
level, plastic strain level) obtained from the element integration points
and corresponding material model.

• EET ZZEE - The implementation of Zienkiewicz Zhu Error Estimator. It
requires the special element algorithms, which may not be available for all
element types.

• EET CZZSI - The implementation of combined criteria: Zienkiewicz Zhu
Error Estimator for elastic regime and scalar error indicator in non-linear
regime.

Error estimator/indicator eetype
EET SEI 0
EET ZZEE 1
EET CZZSI 2

Table 5: Supported error estimators and indicators.

The sets of parameters (errorestimatorparams field) used to configure each
error estimator are different

• EET SEI
[regionskipmap(ia) #] \
vartype(in) # \
minlim(rn) # maxlim(rn) # \
mindens(rn) # maxdens(rn) # defdens(rn) # \
[remeshingdensityratio(rn) #]

– regionskipmap parameter allows to skip some regions. The error is
not evaluated in these regions and default mesh density is used. The
size of this array should be equal to number of regions and nonzero
entry indicates region to skip.

– vartype parameter determines the type of internal variable to be used
as error indicator. Currently supported value is 1, representing dam-
age based indicator.

– If the indicator value is in range given by parameters (minlim, maxlim)
then the proposed mesh density is linearly interpolated within range
given by parameters (mindens, maxdens). If indicator value is less
than value of minlim parameter then value of defdens parameter is
used as required density, if it is larger than maxlim then maxdens is
used as required density.

– remeshingdensityratio parameter determines the allowed ratio be-
tween proposed density and actual density. The remeshing is forced,
whenever the actual ratio is smaller than this value. Default value is
equal to 0.80.
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• EET ZZEE
[regionskipmap(ia) #] \
normtype(in) # \
requirederror(rn) # \
minelemsize(rn) #

– regionskipmap parameter allows to skip some regions. The error is
not evaluated in these regions and default mesh density is used. The
size of this array should be equal to number of regions and nonzero
entry indicates region to skip.

– normtype Allows select the type of norm used in evaluation of error.
Default value is to use L2 norm (equal to 0), value equal to 1 uses
the energy norm.

– requirederror parameter determines the required error to obtain (in
percents/100).

– minelemsize parameter allows to set minimum limit on element size.

• EET CZZSI - combination of parameters for EET SEI and EET ZZEE;
the in elastic regions are driven using EET SEI, the elastic are driven by
EET ZZEE.

6.21 Material interfaces

The material interfaces are used to represent and track the position of vari-
ous interfaces on fixed grids. Typical examples include free surface, evolving
interface between two materials, etc. Available representations include:

MI miflag Compatibility
LEPlic 0 2D triangular
LevelSet 1 2D triangular

• LEPlic- representation based on Volume-Of-Fluid approach; the initial
distribution of VOF fractions should be specified for each element (see
element manual)

[refvol(rn) #]

– parameter refvol allows to set initial volume of reference fluid, then
the reference volume is computed in each step and printed, so the
accuracy and mass conservation can be monitored.

LevelSet- level set based representation
[levelset(ra) # OR refmatpolyx(ra) # refmatpolyy(ra) #] \
[lsra(in) #] [rdt(rn) #] [rerr(rn) #]

– levelset allows to specify the initial level set values for all nodes di-
rectly. The size should be equal to total number of nodes within the
domain.

– Parameters refmatpolyx and refmatpolyy allow to initialize level set by
specifying interface geometry as 2d polygon. Then polygon describes
the initial zero level set, and level set values are then defined as signed
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distance from this polygon. Positive values are on the left side when
walking along polygon. The parameter refmatpolyx specifies the x-
coordinates of polygon vertices, parameter refmatpolyy y-corrdinates.
Please note, that level set must be initialized, either using levelset
parameter or using refmatpolyx and refmatpolyy.

– Parameter lsra allows to select level set reinitialization algorithm.
Currently supported values are 0 (no re-initialization), 1 (re-initializes
the level set representation by solving dτ = S(φ)(1− |∇d|) to steady
state, default), 2 (uses fast marching method to build signed distance
level set representation).

– Parameters rdt rerr are used to control reinitialization algorithm for
lsra = 0. rdt allows to change time step of integration algorithm and
parameter rerr allows to change default error limit used to detect
steady state.

6.22 Mesh generator interfaces

The mesh generator interface is responsible to provide a link to specific mesh
generator. The supported values of meshpackage parameter are

• MPT T3D: meshpackage = 0. T3d mesh interface. Default. Supports
both 1d, 2d (triangles) and 3d (tetrahedras) meshes. Reliable.

• MPT TARGE2: meshpackage = 1. Interface to Targe2 2D mesh genera-
tor.

6.23 Initialization modules

Initialization modules allow to initialize the state variables using data previously
computed by external software. The number of initialization module records is
specified in analysis record using ninitmodules parameter (see the initial part of
section 6). The general format is the following:

*EntType initfile(string) #
The file name following the keyword “initfile” specifies the path to the file that
contains the initialization data and should be given without quotes.

Currently, the only supported initialization module is

• Gauss point initialization module

GPInitModule initfile(string) #

– Each Gauss point is represented by one line in the initialization file.

– The Gauss points should be given in a specific order, based on the
element number and the Gauss point number, in agreement with the
mesh specified in later sections.

– Each line referring to a Gauss point should contain the following data:
elnum(in) # gpnum(in) # coords(ra) # ng(in) # \
var 1 id(in) # values 1(ra) # \

... \
var ng id(in) # values ng(ra) #
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– elnum is the element number

– gpnum is the Gauss point number

– coords are the coordinates of the Gauss point

– ng is the number of groups of variables that will follow

– var 1 id is the identification number of variable group number 1 (ac-
cording to the definitions in internalstatetype.h)

– values 1 are the values of variables in group number 1

– var ng id is the identification number of variable group number ng

– values ng are the values of variables in group number ng

– Example:
“37 4 3 0.02 0.04 0.05 3 52 1 0.23 62 1 0.049 1 6 0 -2.08e+07 0 0 0 0”
means that Gauss point number 4 of element number 37 has coor-
dinates x = 0.02, y = 0.04 and z = 0.05 and the initial values are
specified for 3 groups of variables;
the first group (variable ID 52) is of type IST DamageScalar (see in-
ternalstatetype.h) and contains 1 variable (since it is a scalar) with
value 0.23;
the second group (ID 62) is of type IST CumPlasticStrain and con-
tains 1 variable with value 0.049;
the third group is of type IST StressTensor and contains 6 variables
(stress components σx, σy, etc.) with values 0, -2.08e+07, 0, 0, 0, 0

6.24 Export modules

Export modules allow to export computed data into external software for post-
processing. The number of export module records is specified in analysis record
using nmodules parameter (see the initial part of section 6). The general format
is the following:

*EntType [tstep all] \
[tstep step(in) #] \
[tsteps out(rl) #] \
[domain all] \
[domain mask(in) #]

To select all solution steps, in which output will be performed, use tstep all.
To select each tstep step-nth step, use tstep step parameter. In order to select
only specific solution steps, the tsteps out list can be specified, supplying solution
step number list in which output will be done. To select output for all domain
of the problem the domain all keyword can be used. To select only specific
domains, domain mask array can be used, where the values of the array specify
the domain numbers to be exported. Currently, the supported export modules
are following

• VTK export

vtk [vars(ia) #] \
[primvars(ia) #] \
[cellvars(ia) #] \
[stype(in) #] \
[regionstoskip(ia) #]
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vtkxml [vars(ia) #] \
[primvars(ia) #] \
[cellvars(ia) #] \
[stype(in) #] \
[regionstoskip(ia) #] \
[nvr(in) #] \
[vrmap(ia) #]

– The vtk module is obsolete, use vtkxml instead. It allows to export
results recovered on region by region basis and has more features.

– The array vars contains identifiers for those internal variables which
are to be exported. The id values are defined by InternalStateType
enumeration, which is defined in include file “src/oofemlib/internal-
statetype.h”.

– The array primvars contains identifiers of primary variables to be ex-
ported. The possible values correspond to the values of enumerated
type UnknownType, which is again defined in “src/oofemlib/unknown-
type.h”. Please note, that the values corresponding to enumerated
type values start from zero, if not specified directly and that not all
values are supported by particular material model or analysis type.

– The array cellvars contains identifiers of constant variables defined
on an element (cell), e.g. a material number. Identifier numbers are
specified in “src/oofemlib/internalstatetype.h”.

– The parameter stype allows to select smoothing procedure for inter-
nal variables, which is used to compute nodal values from values in
integration points.

– The parameter nvr allows to set number of virual regions. The inter-
nal (state) variables defined in integration poits need to be transfered
into nodal values. This process is called nodal recovery. VTKXML
module allows to perform recovery not only over the whole domain,
but also over so called virtual regions. This allows to exactly match
discontinuity along region boundary instead of smoothing it. The
concept of virtual regions allows to map several true regions onto
single virtual region and then perform recovery over virtual regions
instead of true ones. If nvr is set to zero (default), the recovery is
performed over whole domain (single virtual region), when positive,
it should be equal to number of virtual regions and vrmap should be
provided. If negative, then recovery over real regions is used.

– The array vrmap defines the mapping from real (true) regions to
virtual regions. The size of this array should equal to number of true
regions and values should be in range ¡1, nvr¿. When nvr is zero or
negative, this parameter is ignored. The i-th value defines mapping
of true region number to virtual region number. Zero or nagative
value causes region to be ignored.

By default vtk and vtkxml modules perform recovery over the whole do-
main. The VTKXML module can operate in region-by-region mode (see
nvr and vrmap parameters). In this case, the smoothing is performed only
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over particular virtual region, where only elements in this virtual region
participate.

• Homogenization of stresses and strains in the global coordinate system.
Corresponding stress and strain components are summed and averaged
over the volume. It is possible to select material numbers from which the
averaging occurs. The averaging works for 3D domains with an extension
to trusses. A truss is considered as a volume element with oriented stress
and strain components along the truss axis. The transformation to global
components occurs before averaging.

hom [scale(rn) #] \
[MatNum(ia) #]

– The parameter scale multiplies all averaged stresses and strains. scale=1
by default.

– An integer array MatNum specifies which material numbers are taken
into account. All material numbers are averaged by default.

• Gauss point export is useful if one needs to plot a certain variable (such
as damage) as a function of a spatial coordinate using tools like gnuplot.
It generates files with data organized in columns, each row representing
one Gauss point. In this way, one can plot e.g. the damage distribution
along a one-dimensional bar.

gpexportmodule [vars(ia) #] \
[ncoords(in) #]

– The array vars contains identifiers for those internal variables which
are to be exported. The id values are defined by InternalStateType
enumeration, which is defined in include file “src/oofemlib/internal-
statetype.h”.

– Parameter ncoords specifies the number of spatial coordinates to be
exported at each Gauss point. Depending on the spatial dimension
of the domain, the points can have one, two or three coordinates.
If ncoords is set to -1, only those coordinates that are actually used
are exported. If ncoords is set to 0, no coordinates are exported. If
ncoords is set to a positive integer, exactly ncoords coordinates are
exported. If ncoords exceeds the actual number of coordinates, the
actual coordinates are supplemented by zeros. For instance, if we
deal with a 2D problem, the actual number of coordinates is 2. For
ncoords=3, the two actual coordinates followed by 0 will be exported.
For ncoords=1, only the first coordinate will be exported.

The Gauss point export module creates a file with extension “gp” after
each step for which the output is performed. This file contains a header
with lines starting by the symbol #, followed by the actual data section.
Each data line corresponds to one Gauss point and contains the following
data:

1. element number,
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2. material number,

3. Gauss point number,

4. contributing volume around Gauss point,

5. Gauss point global coordinates (written as a real array of length
ncoords),

6. internal variables according to the specification in vars (each written
as a real array of the corresponding length).

Example:
“GPExportModule 1 tstep step 100 domain all ncoords 2 vars 5 4 13 31
64 65”
means that the *.gp file will be written after each 100 steps and will
contain for each of the Gauss points in the entire domain its 2 coordinates
and also internal variables of type 4, 13, 31, 64 and 65, which are the
strain tensor, damage tensor, maximum equivalent strain level, stress work
density and dissipated work density. Of course, the material model must
be able to deliver such variables. The size of the strain tensor depends on
the spatial dimension, and the size of the damage tensor depends on the
spatial dimension and type of model (e.g., for a simple isotropic damage
model it will have just 1 component while for an anisotropic damage model
it may have more). The other variables in this example are scalars, but
they will be written as arrays of length 1, so the actual value will always
be preceded by “1” as the length of the array. Since certain internal
variables have the meaning of densities (per unit volume or area, again
depending on the spatial dimension), it is useful to have access to the
contributing volume of the Gauss point. The product of this contributing
volume and the density gives an additive contribution to the total value
of the corresponding variable. This can be exploited e.g. to evaluate the
total dissipated energy over the entire domain.

7 Domain record(s)

This set of records describes the whole domain and its type. Depending on the
type of problem, there may be one or several domain records. If not indicated,
one domain record is default for all problem types.

The domain type is used to resolve the default number of DOFs in node and
their physical meaning. Format is following
domain *domainType

The *domainType can be one from the following

• The 2dPlaneStress and 2d-Truss modes declare two default dofs per
node (u-displacement, v-displacement),

• The 3d mode declares three default dofs per node (u-displacement, v-
displacement, w-displacement),

• The 2dMindlinPlate mode declares three default dofs per node (w-
displacent, u-rotation, v-rotation).
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• The 3dShell mode declares six default dofs per node (displacement and
rotation along each axis).

• The 2dBeam mode declares three default dofs per node (u-displacement,
w-displacement, v-rotation).

• The 2dIncompFlow mode declares three default dofs per node (u-velocity,
v-velocity, and pressure). The default number of dofs per node as well as
their physical meaning can be overloaded in particular dof manager record
(see section 7.3).

The further records describe particular domain components - OutputMan-
agers, DofManagers, Elements, CrossSection models, Material Models,
Boundary and Initial Conditions and Load time functions.

7.1 Output manager record

The output manager controls output. It can filter output to specific solution
steps, and within these selected steps allows also to filter output only to specific
dof managers and elements. The format of output manager record is
OutputManager [tstep all] \

[tstep step(in) #] \
[tsteps out(rl) #] \
[dofman all] \
[dofman output(rl) #] \
[dofman except(rl) #] \
[element all] \
[element output(rl) #] \
[element except(rl) #]

To select all solution steps, in which output will be performed, use tstep all. To
select each tstep step-nth step, use tstep step parameter. In order to select only
specific solution steps, the tsteps outlist can be specified, supplying solution step
number list in which output will be done. The combination of tstep step and
tsteps out parameters is allowed.

Output manager allows also to filter output to only specific dof managers
and elements. If these specific members are selected, the output happens only
in selected solution steps. The dofman all and element all parameters select
all dof managers or elements respectively. Parameter arrays dofman output and
element output allow to select only specific members. Numbers of selected mem-
bers are then contained in dofman output or element output lists respectively.
The previously selected members can be explicitly de-selected by specifying their
component numbers in dofman except or element except lists.

7.2 Components size record

This record describes the number of components in related domain. The par-
ticular records will follow immediately in input file. The general format is:
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ndofman(in) # \
nelem(in) # \
ncrosssect(in) # \
nmat(in) # \
nbc(in) # \
nic(in) # \
nltf(in) # \
[nbarrier(in) #]

where ndofman represents number of dof managers (e.g. nodes) and their associ-
ated records, nelem represents number of elements and their associated records,
ncrosssect is number of cross sections and their records, nmatdnMat is number
of material models and their records, nbc represents number of boundary condi-
tions (including loads) and their records, nic parameter determines the number
of initial conditions, and nltf represents number of time functions and their as-
sociated records. The optional parameter nbarrier represents the number of
nonlocal barriers and their records. If not specified, no barriers are assumed.

7.3 Dof manager records

These records describe individual DofManager records (i.e. nodes or element
sides (if they manage some DOFs)). The general format is following:

*DofManagerType (num#)(in) \
[load(ra) #] \
[ndofs(in) # DofIDMask(ia) #] \
[bc(ia) #] \
[ic(ia) #] \
[doftype(ia) # masterMask(ia) #] \
〈[shared() #]〉 〈[remote() #]〉 〈[null() #]〉 \
〈[partitions(ia) #]〉

The order of particular records is optional, the dof manager number is deter-
mined by (num#)() parameter. The numbering of individual dof managers is
arbitrary, it could be even non-continuous. In this context, one could think of
dof manager number as a label that is assigned to individual dof manager and
by which the dof manager is referenced. In parallel mode, the label represents a
global id across all partitions.

The applied primary (Dirichlet) boundary conditions are specified using ”bc”
record, while natural boundary conditions using ”load” parameter.

• The size of ”bc” array (primary bc) should be equal to number of DOFs in
dof manager and i-th value relates to i-th DOF - the ordering and physical
meaning of DOFs is determined by domain record and can be optionally
specified for each dof manager individually (see next paragraph). The
values of this array are corresponding boundary condition record numbers
or zero, if no primary bc is applied to corresponding DOF. The com-
patible boundary condition type are required: primary conditions require
”BoundaryCondition” records.

• The load ”array” contains record numbers of natural boundary conditions
that are applied. The required record type for natural condition is ”Nodal-
Load”. The actual value is the summation of all contributions, if more
than one natural bc is applied. See section on boundary conditions for the
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syntax. Please note, that the values of natural bc for individual DOFs are
specified in its record, not in dofmanager record.

By default, if ”bc” and/or ”load” parameters are omitted, no primary and/or
natural bc are applied. Analogously, initial conditions are represented using ic
array. The size of ic array should be equal to number of DOFs in dof manager.
The values of this array are corresponding initial condition record numbers or
zero, if no initial condition is applied to corresponding DOF (in this case zero
value is assumed as value of initial condition).

By default, the number of DOFs per node or side and their physical meanings
are determined by domain record (*domainType keyword). If it is necessary
to have different number of DOFs, then the ndofs field determines number of
DOFs in DofManager, and their physical meaning is determined by DofID-
Mask array. Size of this array should be equal to ndofs value. Each item of
DofIDMask array describes the physical meaning of corresponding DOF in dof
manager. Currently the following values are supported: {u-displacement=1, v-
displacement=2, w-displacement=3, u-rotation=4, v-rotation=5, w-rotation=6,
u-velocity=7, v-velocity=8, w-velocity=9, temperature=10, pressure=11, spe-
cial dofs for gradient-type constitutive models=12 and 13, mass concentra-
tion=14, special dofs for extended finite elements (XFEM)=15–30}. It is not
allowed to have two DOFs with the same physical meaning in the
same DofManager.

Parameters dofType and masterMask allows to connect some dof manager’s
dofs (so-called “slave” dofs) to corresponding dof (according to their physical
meaning) of another dof manager (so-called “master” dof). The master slave
principle allows for example simple modeling of structure hinges, where multiple
elements are connected by introducing multiple nodes (with same coordinates)
sharing the same displacement dofs and each one possessing their own rotational
dofs. Parameter dofType determines the type of (slave) dof to create. Currently
supported values are 0 for master DOF, 1 for simpleSlave DOF (linked to an-
other single master DOF), and 2 for general slave dof, that can depend on
different DOFs belonging to different dof managers. If dofType is not specified,
then by default all DOFs are created as master DOFs. If provided, masterMask
is also required. The meaning of masterMask parameter is depending on type
of particular dofManager, and will be described in corresponding sections.

The shared indicates, that dofmanager is shared by neighboring partitions. The
contributions from all contributing domains are summed. Typical for node cut
algorithm (see figures 6 and 7).

Remote DofManager is indicated by remote parameter. Then DofManager in
active domain is only mirror of some remote DofManager and it is necessary to
copy remote values into local ones. Typical for element cut (see fig. 9). The null
parameter indicates so-called null DofManager. The null DofManager should be
shared only by remote elements (these are only introduced for nonlocal constitutive
model to allow effective local averaging, so only local material value to be averaged
are transferred for these remote elements). Null nodes are therefore used only for
computing real integration point coordinates of remote elements and there is no
reason to maintain their unknowns (they have no equation number assigned, see
fig. 7). They do not contribute to local partition governing equation. Only one of
the null remote shared parameters can be used for particular DofManagers. If no
one is used, the DofManager is maintained as local for particular partition.
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The list of remote partitions sharing corresponding DofManager or list contain-
ing remote partition containing remote DofManager counterpart is specified using
partitions parameter. The local partition should not be included in the list. The
slaves are allowed, but masters have to be in the same partition. The masters can
be again remote copies.

Supported DofManagerType keywords are

• Node record

Node coords(ra) # \
[lcs(ra) #]

Represent an abstraction for finite element node. The node coordinates
in space (given by global coordinate system) are described using coords
field. This array contains x, y and possibly z (depends on problem under
consideration) coordinate of node. By default, the coordinate system in
node is global coordinate system. User defined local coordinate system in
node is described using lcs array. This array contains six numbers, where
the first three numbers represent a directional vector of the local x-axis,
and the next three numbers represent a directional vector of the local y-
axis. The local z-axis is determined using a vector product. A right-hand
coordinate system is assumed. If user defined local coordinate system in
node is specified, then the boundary conditions and applied loading are
specified in this local coordinate system. The reactions and displacements
are also in lcs system at the output.

The node can create only master DOFs and SimpleSlave DOFs, so the
allowable values of dofType array are in range 0,1. For the Node dof
manager, the masterMask is the array of size equal to number of DOFs,
and the i-th value determines the master dof manager, to which i-th dof is
directly linked (the dof with same physical meaning are linked together).
The local coordinate system in node with same linked dofs is supported,
but it should be exactly the same as on master.

• Rigid arm record

RigidArmNode coords(ra) # \
master(in) # \
[masterMask(ia) #]

Represent node connected to other node (called master) using rigid arm.
Rigid arm node posses no degrees of freedom - all dofs are mapped to
master dofs. The introduction of rigid arm connected nodes allows to
avoid very stiff elements used for modelling the rigid-arm connection. The
rigid arm node maps its dofs to master dofs using simple transformations
(small rotations are assumed). Therefore, the contribution to rigid arm
node are localized directly to master related equations. The rigid arm node
can not have its own boundary or initial conditions, they are determined
completely from master dof conditions. Currently it is possible to map
only certain dofs - see dofType. Linked DOFs should have dofType value
equal to 2, non-linked (primary) DOFs 0.

Rigid arm node can be loaded independently of master. The node coor-
dinates in space (given by global coordinate system) are described using
coords field. This array contains x, y and possibly z (depends on prob-
lem under consideration) coordinate of node. The master parameter is
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the master node number, to which rigid arm node dofs are mapped. The
current implementation allows chaining of rigid arm nodes. The optional
parameter masterMask allows to specify how particular mapped DOF de-
pends on master DOFs. The size of masterMask array should be equal to
number of DOFs. For all linked DOFs (with corresponding dofType value
equal to 2) the corresponding value of masterMask array should be 1.

• Hanging node

HangingNode coords(ra) # \
dofType(in) # \
masterElement(in) #

Hanging node is connected to an a master element using generalized in-
terpolation. Hanging node posses no degrees of freedom (except unlined
dofs) - all values are interpolated from corresponding master elements and
its DOFs. arbitrary FE mesh of concrete specimen or to facilitate the local
refinment of FE mesh. The hanging nodes can be in a chain.

The contributions of hanging node are localized directly to master related
equations. The hanging node can have its own boundary or initial con-
ditions, but only for primary unlinked DOFs. For linked DOFs, these
conditions are determined completely from master DOF conditions. The
local coordinate system should be same for all master nodes. The hanging
node can be loaded independently of its master.

Values of array dofType can have following values: 0-primary DOF, 2-
linked DOF.

The value of masterElement specifies the element number to which the
hanging node is attached. The node can be attached to any arbitrary
coordinate within the master element. The element must support the
necessary interpolation classes. The same interpolation for unknowns and
geometry is assumed.

• Slave node

SlaveNode coords(ra) # \
dofType(in) # \
masterDofMan(ia) # \
weights(ra) #

Works identical to hanging node, but the weights (weights) are not com-
puted from any element, but given explicitly, as well as the connected dof
managers (masterDMan).

• Element side

ElementSide
Represents an abstraction for element side, which holds some unknowns.

7.4 Element records

These records specify a description of particular elements. The general format
is following:
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*ElementType (num#)(in) \
mat(in) # crossSect(in) # nodes(ia) # \
[bodyLoads(ia) #] [boundaryLoads(ia) #] \
[activityltf(in) #] [lcs(ra) #] \
〈*ElementType〉 〈[partitions(ia) #]〉 〈[remote() #]〉

The order of element records is optional, the element number is determined
by (num#)() parameter. The numbering of individual elements is arbitrary,
it could be even non-continuous. In this context, one could think of element
number as a label that is assigned to individual elements and by which the
element is referenced. In parallel mode, the label represents a global id across all
partitions.

Element material is described by parameter mat, which contains correspond-
ing material record number. Element cross section is determined by cross sec-
tion with crossSect record number. Element dof managers (nodes, sides, etc.)
defining element geometry are specified using nodes array.

Body load acting on element is specified using bodyLoads array. Components
of this array are corresponding load record numbers. The loads should have the
proper type (body load type), otherwise error will be generated.

Boundary load acting on element boundary is specified using boundaryLoads
array. The format of this array is

2 · size lnum(1) id(1) . . . lnum(size) id(size),

where size is total number of loadings applied to element, lnum(i) is the applied
load number, and id(i) is the corresponding entity number, to which the load
is applied (for example a side or a surface number). The entity numbering is
element dependent and is described in element specific sections. The applied
loads must be of proper type (boundary load type), otherwise error is generated.

The support for element insertion and removal during the analysis is pro-
vided. One can specify optional time function (identified by its id using activ-
ityltf parameter). The nonzero value of this time function indicates, whether
the element is active (nonzero value, the default) or inactive (zero value) at
particulat solution step. Currently available only for structural elements.

Orientation of local coordinates can be specified using lcs array. This array
contains six numbers, where the first three numbers represent a directional
vector of local x-axis, and the next three numbers represent a directional vector
of local y-axis. The local z-axis is determined using the vector product. The lcs
array on the element is particularly useful for modeling of orthotropic materials
which follow the element orientation. On a beam or truss element, the lcs
array has no effect and the 1D element orientation is aligned with the global xx
component.

The remote forces the element to be remote element. Remote element does not
contribute to local partition governing equation. They are introduced in order to
implement band of elements involved in computation of nonlocal variables (see fig.
7 illustrating this approach for node-cut partitioning). They role is to provide local
mirror of corresponding remote partition element integration point values which
undergo nonlocal averaging on local partition. If not used, element is assumed to
be local partition element. When remote is used, the partitions parameter should
contain remote partition number, where corresponding element is local (this array
should have size equal to one).
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Available material models, their outline and corresponding parameters are
described in separate Element Library Manual.

7.5 Cross section records

These records specify a cross section model descriptions. The general format is
following:

*CrossSectType (num#)(in)

The order of particular cross section records is optional, cross section model
number is determined by (num#)() parameter. The numbering should start
from one and should end at n, where n is the number of records.

The crossSectType keyword can be one from following possibilities

•
SimpleCS [thick(rn) #] [width(rn) #] [area(rn) #] \

[iy(rn) #] [iz(rn) #] [ik(rn) #] \
[shearareay(rn) #] [shearareaz(rn) #] beamshearcoeffrn

Represents integral type of cross section model. In current implementa-
tion, such cross section is described using cross section thick (thickVal) and
width (widthVal). For some problems (for example 3d), the corresponding
volume and cross section dimensions are determined using element geom-
etry, and then you can omit thickVal and widthVal parameters. Parameter
area allows to set cross section area, parameters iz, iz, and ik represent
inertia moment along y and z axis and torsion inertia moment. Parameter
beamshearcoeff allows to set shear correction factor, or equivalent shear ar-
eas (shearareay and shearareaz parameters) can be provided. These cross
section properties are assumed to be defined in local coordinate system of
element.

•

LayeredCS nLayers(in) # \
LayerMaterials(ia) # \
Thicks(ra) # Widths(ra) # \
midSurf(rn) #

Represents the layered cross section model, based on geometrical hypothe-
sis, that cross sections remain planar after deformation. Number of layers
is determined by nLayers parameter. Materials for each layer are specified
by LayerMaterials array. For each layer is necessary to input geometrical
characteristic, thick - using Thicks array, and width - using Widths array.
Position of mid surface is determined by its distance from bottom of cross
section using midSurf parameter (normal and momentum forces are then
computed with regard to it’s position). Elements using this cross section
model must implement layered cross section extension. For information
see element library manual.

•
FiberedCS nfibers(in) # fibermaterials(ia) # \

thicks(ra) # widths(ra) # thick(rn) # width(rn) # \
fiberycentrecoords(ra) # fiberzcentrecoords(ra) #

Cross section represented as a set of rectangular fibers. It is based on ge-
ometrical hypothesis, that cross sections remain planar after deformation
(3d generalization of layered approach for beams). Paramater nfibers de-
termines the number of fibers that together form the overall cross section.
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The model requires to specify a material model corresponding to partic-
ular fiber using fibermaterials array. This array should contain for each
fibre corresponding material model number (the material model specified
on element level has no meaning in this particular case). The geometry
of cross section is determined from fiber dimensions and fiber
positions, all input in local coordinate system of the beam (yz
plane). The thick and width of each fiber are determined using thicks
and widths arrays. The overall thick and width are specified using pa-
rameters thick and width. Positions of particular fibers are specified by
providing coordinates of center of each fiber using fiberycentrecoords array
for y-coordinates and fiberzcentrecoords array for z-coordinates.

7.6 Material type records

These records specify a material model description. The general format is fol-
lowing:

*MaterialType (num#)(in) d(rn) #

The order of particular material records is optional, the material number
is determined by (num#)() parameter. The numbering should start from one
and should end at n, where n is the number of records. Material density is
compulsory parameter and it’s value is given by d parameter.

Available material models, their outline and corresponding parameters are
described in separate Material Library Manual.

7.7 Nonlocal barrier records

Nonlocal material models of integral type are based on replacement of certain
suitable local quantity in local constitutive law by their nonlocal counterparts,
that are obtained as weighted average over some characteristic volume. The
weighted average is computed as a sum of a remote value multiplied by weight
function value. The weight function typically depend on a distance between
remote and receiver points and decreases with increasing distance. In some
cases, it is necessary to disregard mutual interaction between some points (for
example if they are on the opposite sides of a thin notch, which prevents the
nonlocal interactions to take place). The barriers are the way how to introduce
these constrains. The barrier represent a curve (in 2D) or surface (in 3D). When
the line connecting receiver and remote point intersects a barrier, the barriers
is activated and the corresponding interaction is not taken into account.

Currently, the supported barrier types are following:

• Polyline barrier

polylinebarrier (num#)(in) vertexnodes(ia) # \
[xcoordindx(in) #] [ycoordindx(in) #]

This represents a polyline barrier for 2D problems. Barrier is a poly-
line, defined as a sequence of nodes representing vertices. The vertices
are specified using parameter vertexnodes array, which contains the node
numbers. The optional parameters xcoordindx and ycoordindx allow to se-
lect the plane (xy, yz, or xz), where the barrier is defined. The xcoordindx
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is the first coordinate index, ycoordindx is the second. The default values
are 1 for xcoordindx and 2 for ycoordindx, representing barrier in xy plane.

• Symmetry barrier

symmetrybarrier (num#)(in) origin(ra) # \
normals(ra) # activemask(ia) #

Implementation of symmetry barier, that allows to specify up to three
planes (orthogonal ones) of symmetry. This barrier allows to model the
symmetry of the averaged field on the boundary without the need of mod-
eling the other part of structure across the plane of symmetry. It is based
on modifying the integration weights of source points to take into account
the symmetry. The potential symmetry planes are determined by specify-
ing orthogonal right-handed coordinate system, where axes represent the
normals of corresponding symmetry planes. Parameter origin determines
the origin of the coordinate system, the normals array contains three com-
ponents of x-axis direction vector, followed by three components of y-axis
direction vector (expressed in global coordinate system). The z-axis is de-
termined from the orthogonality conditions. Parameter activemask allows
to specify active symmetry planes; i-th nonzero value activates the symme-
try barrier for plane with normal determined by corresponding coordinate
axis (x=1, y=2, z=3).

7.8 Load and boundary conditions

These records specify description of boundary conditions. The general format
is following:

*EntType (num#)(in) \
loadTimeFunction(in) # \
[valType(in) #] [defaultDofs(ia) #]

The order of particular records is optional, boundary condition number is
determined by (num#)() parameter. The numbering should start from one and
should end at n, where n is the number of records. Time function value (given
by loadTimeFunction parameter) is a multiplier, using which each component
(value of loading or value of boundary condition) describes its time variation.
The optional parameter valType allows to determine the physical meaning of bc
value, which is sometimes requared. Supported values are (1 - temperature, 2 -
force/traction, 3 - pressure, 4 - humudity, 5 - velocity, 6 - displacement). Another
optional parameter defaultDofs is used to determine which dofs the boundary
condition should act upon when new nodes are created on the boundaries.

Currently, EntType keyword can be one from

• Dirichlet boundary condition

BoundaryCondition prescribedvalue(rn) # \
[d(rn) #] \
[isImposedTimeFunction(in) #]

Represents boundary condition. Prescribed value is specified using pre-
scribedvalue parameter. The physical meaning of value is fully determined
by corresponding DOF. Optionally, the prescribed value can be specified
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using d parameter. It is inroduced for compatibility reasons. If prescribed-
value is specified, then d is ignored. The nonzero value of isImposedTime-
Function time function indicates that given boundary condition is active,
zero value indicates not active boundary condition in given time (the bc
does not exist). By default, the boundary condition apply at any time.

• Prescribed gradient boundary condition (Dirichlet type)

PrescribedGradient gradient(rm) # \
[cCoords(ra) #] \
[isImposedTimeFunction(in) #]

Prescribes vi = dij(xj − x̄j) or s = d1j(xj − x̄j) where vi are primary
unknowns, xj is the coordinate of the node, x̄ is cCoords and d is gradient.
The parameter cCoords defaults to zero. This is typical boundary condi-
tion in multiscale analysis where d = ∂xs would a macroscopic gradient at
the integration point, i.e. this is a boundary condition for prolongation.
It is also convenient to use when one wants to test a arbitrary specimen
for shear.

• Nodal fluxes (loads)

NodalLoad components(ra) # \
[cstype(in) #]

Concentrated nodal load. The components of nodal load vector are given
by components parameter. The size of this vector corresponds to a total
number of nodal DOFs, and i-th value corresponds to i-th DOF in asso-
ciated dof manager. The load can be defined in global coordinate system
(cstype = 0) or in entity - specific local coordinate system (cstype = 1,
default).

•
PrescribedTractionPressureBC [isImposedTimeFunction(in) #]

Represents pressure boundary condition (of Dirichlet type) due to pre-
scribed tractions. In CBS algorithm formulation the prescribed traction
boundary condition leads indirectly to pressure boundary condition in cor-
responding nodes. This boundary condition implements this pressure bc.
The value of bc is determined from applied tractions, that should be speci-
fied on element edges/surfaces using suitable boundary loads. The nonzero
value of isImposedTimeFunction time function indicates that given bound-
ary condition is active, zero value indicates not active boundary condition
in given time (the bc does not exist). By default, the boundary condition
apply at any time.

Body loads

• Volume flux (load)

DeadWeight Components(ra) #
Represents dead weight loading applied on element volume (for structural
elements). For transport problems, it represents the internal source, i.e.
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the rate of (heat) generated per unit volume. The magnitude of load for
specific i-th DOF is computed as product of material density, correspond-
ing volume and i-th member of Components array.

• Structural temperature load

StructTemperatureLoad Components(ra) #

Represents temperature loading imposed to some elements. The mem-
bers of Components array represent the change of temperature (or change
of temperature gradient) corresponding to specific element strain compo-
nents. See element library manual for details.

• Structural eigenstrain load

StructEigenstrainLoad Components(ra) #
Prescribes eigenstrain (or stress-free strain) to a structural element. The
array of Components is defined in the global coordinate system. The num-
ber of components corresponds to a material mode, e.g. plane stress has
three components and 3D six. Periodic boundary conditions can be im-
posed using eigenstrains and master-slave nodes. Consider decomposition
of strain into average and fluctuating part

εεε(x) = 〈εεε〉+ εεε∗(x) (1)

where 〈εεε〉 can be imposed as eigenstrain over the domain and the solution
gives the fluctuating part εεε∗(x). Master-slave nodes have to interconnect
opposing boundary nodes of a unit cell.

Boundary loads

• Constant edge fluxes (load)

ConstantEdgeLoad ndofs(in) # \
loadType(in) # \
Components(ra) # \
[dofexcludemask(ia) #] \
[csType(in) #] \
[properties(dc) #]

• Constant surface fluxes (load)

ConstantSurfaceLoad ndofs(in) # \
loadType(in) # \
Components(ra) # \
[dofexcludemask(ia) #] \
[csType(in) #] \
[properties(dc) #]

Represent constant edge/surface loads or boundary conditions. The ndofs
parameter must be set equal to element’s number of unknowns. Param-
eter loadType distinguishes the type of boundary condition (supported
values are: 2 - prescribed flux input (Neumann boundary condition), 3 -
convection bc (Newton boundary condition)). If the boundary condition
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corresponds to distributed force load, the Components array contains com-
ponents of distributed load corresponding to element unknowns. The load
is specified for all DOFs of object to which is associated. For some types
of boundary conditions the zero value of load does not mean that the load
is not applied (Newton’s type of bc, for example). Then some mask, which
allows to exclude specific dofs is necessary. The dofexcludemask parameter
is introduced to alow this. It should have the same size as Components ar-
ray, and by default is filled with zeroes. If some value of dofExcludeMask
is set to nonzero, then the corresponding componentArray is set to zero
and load is not applied for this DOF. If the boundary condition corre-
sponds to prescribed flux input, then the Components array contains the
components of prescribed input flux corresponding to element unknowns.
If the boundary condition is a convection boundary condition (loadType =
6) then Components array contains the environmental values (temperature
of the environment) corresponding to element unknowns, and properties
dictionary should contain value of convection coefficient (assumed to be
constant) under ’a’ key.

The load can be defined in global coordinate system (csType = 0, default)
or in entity - specific local coordinate system (csType = 1).

• Linear edge flux (load)

LinearEdgeLoad ndofs(in) # \
loadType(in) # \
Components(ra) # \
[dofexcludemask(ia) #] \
[csType(in) #]

Represents linear edge load. The meanings of parameters ndofs, csType,
and loadType are the same as for ConstantEdgeLoad. In Components
array are stored load components for corresponding unknowns at the be-
ginning of edge (ndofs values), followed by values valid for end of edge (nd-
ofs values). The load can be defined in global coordinate system (csType
= 0, default) or in entity - specific local coordinate system (csType = 1).

7.9 Initial conditions

These records specify description of initial conditions. The general format is
following:
InitialCondition (num#)(in) \

conditions(dc) #
The order of particular records is optional, load, boundary or initial condition
number is determined by (num#)() parameter. The numbering should start
from one and should end at n, where n is the number of records. Initial pa-
rameters are listed in conditions dictionary using keys followed by their initial
values. Now ’v’ key represents velocity and ’a’ key represents acceleration.

7.10 Time functions records

These records specify description of time functions, which generally describe
time variation of components during solution. The general format is following:
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*TimeFunctType (num#)(in) \
[initialValue(rn) #]

The order of these records is optional, time function number is determined
by (num#)() parameter. The initialValue parameter allows to control the way,
how increment of receiver is evaluated for the first solution step. This first
solution step increment is evaluated as the difference of value of receiver at this
first step and given initial value (which is by default set to zero). The increments
of receiver in subsequent steps are computed as a difference between receiver
evaluated at given solution step and in previous step.

The numbering should start from one and should end at n, where n is the
number of records.

Currently, TimeFunctType keyword can be one from

• Constant function

ConstantFunction f(t)(rn) #

Represents the constant time function, with value f(t).

• Peak function

PeakFunction t(rn) # \
f(t)(rn) #

Represents peak time function. If time is equal to t value, then the value
of time function is given by f(t) value, otherwise zero value is returned.

• Piecewise function

PiecewiseLinFunction nPoints(in) # \
t(ra) # f(t)(ra) #

Represents the piecewise time function. The particular time values in
t array should be sorted according to time scale. Corresponding time
function values are in f(t) array. Value for time, which is not present in t
is computed using liner interpolation scheme. Number of time-value pairs
is in nPoints parameter.

• Heaviside-like time function

HeavisideLTF origin(rn) # \
value(rn) #

Up to time, given by parameter origin, the value of time function is zero.
If time greater than origin parameter, the value is equal to parameter
value value.

• User defined

UsrDefLTF f(t)(expr) # \
[dfdt(t)(expr) #] \
[d2fdt2(t)(expr) #]

Represents user defined time function. The expressions can depend on
“t” parameter, for which actual time will be substituted and expression
evaluated. The function is defined using f(t) parameter, and optionally, its
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first and second time derivatives using dfdt(t) and d2fdt2(t) parameters.
The first and second derivatives may be required, this depend on type of
analysis.

Very general, but relatively slow.

7.11 Xfem manager record and associated records

This record creates corresponding xfem manager and specifies the number of
its components, in terms of number of enrichment functions, enrichment items,
and geometry items. The global shape functions are represented by individual
enrichment functions. The enrichment items are abstractions of entities, which
are included in the FE model using one or more global functions. Such entity
may represent crack, material interface, slipping interface, etc. The particular
records will follow immediately in input file. The general format is:
XfemManager numberofenrichmentfunctions(in) # \

numberofenrichmentitems(in) # \
numberofgeometryitems(in) #

where numberofenrichmentfunctions represents number of enrichment functions
and their associated records, numberofenrichmentitems represents number of
enrichment items and corresponding records, and numberofgeometryitems rep-
resents number of geometry items, that are used to define the geometry of
individual enrichment items.

The enrichment function records describe individual enrichment functions.
The general format is following:

*EntType (num#)(in)

The geometry item records describe individual geometries of enrichment
items. The general format is following:

*EntType (num#)(in)

The enrichment item records describe individual enrichment items. The gen-
eral format is following:

*EntType (num#)(in) \
(geometryitem#)(in) \
(enrichmentfunction#)(in)

8 Examples

8.1 Beam structure

The example of input file for simple beam structure is presented. Structure
geometry and its constitutive and geometrical properties are shown in fig. (1).
The linear static analysis is required, the influence of shear is neglected. Please
note that one input line which is too long to fit to page, is separated into two
lines using backslash ’\’ character, but OOFEM requires that it must be typed
as one single line.

test41.out

Simple Beam Structure - linear analysis

#only momentum influence to the displacements is taken into account
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Figure 1: Example 1

#beamShearCoeff is artificially enlarged.

LinearStatic 1 nsteps 3

domain 2dBeam

OutputManager tstep_all dofman_all element_all

ndofman 6 nelem 5 ncrosssect 1 nmat 1 nbc 5 nic 0 nltf 3

node 1 coords 3 0. 0. 0. bc 3 0 1 0

node 2 coords 3 2.4 0. 0. bc 3 0 0 0

node 3 coords 3 3.8 0. 0. bc 3 0 0 1

node 4 coords 3 5.8 0. 1.5 bc 3 0 0 0 load 1 4

node 5 coords 3 7.8 0. 3.0 bc 3 0 1 0

node 6 coords 3 2.4 0. 3.0 bc 3 1 1 2

Beam2d 1 nodes 2 1 2 mat 1 crossSect 1 boundaryLoads 2 3 1 bodyLoads 1 5

Beam2d 2 nodes 2 2 3 mat 1 crossSect 1 DofsToCondense 1 6 bodyLoads 1 5

Beam2d 3 nodes 2 3 4 mat 1 crossSect 1 DofsToCondense 1 3

Beam2d 4 nodes 2 4 5 mat 1 crossSect 1

Beam2d 5 nodes 2 6 2 mat 1 crossSect 1 DofsToCondense 1 6

SimpleCS 1 area 0.162 Iy 0.0039366 beamShearCoeff 1.e18 thick 0.54

IsoLE 1 d 1. E 30.e6 n 0.2 tAlpha 1.2e-5

BoundaryCondition 1 loadTimeFunction 1 prescribedvalue 0.0

BoundaryCondition 2 loadTimeFunction 2 prescribedvalue -0.006e-3

ConstantEdgeLoad 3 loadTimeFunction 1 Components 3 0. 10. 0.0\

loadType 3 ndofs 3

NodalLoad 4 loadTimeFunction 1 Components 3 -18.0 24.0 0.0

StructTemperatureLoad 5 loadTimeFunction 3 Components 2 30.0 -20.0

PeakFunction 1 t 1.0 f(t) 1.

PeakFunction 2 t 2.0 f(t) 1.

PeakFunction 3 t 3.0 f(t) 1.

8.2 Plane stress example

patch100.out

Patch test of PlaneStress2d elements -> pure compression

LinearStatic nsteps 1

domain 2dPlaneStress
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Figure 2: Example 2

OutputManager tstep_all dofman_all element_all

ndofman 8 nelem 5 ncrosssect 1 nmat 1 nbc 2 nic 0 nltf 1

node 1 coords 3 0.0 0.0 0.0 bc 2 1 1

node 2 coords 3 0.0 4.0 0.0 bc 2 1 1

node 3 coords 3 2.0 2.0 0.0 bc 2 0 0

node 4 coords 3 3.0 1.0 0.0 bc 2 0 0

node 5 coords 3 8.0 0.8 0.0 bc 2 0 0

node 6 coords 3 7.0 3.0 0.0 bc 2 0 0

node 7 coords 3 9.0 0.0 0.0 bc 2 0 1 load 1 2

node 8 coords 3 9.0 4.0 0.0 bc 2 0 1 load 1 2

PlaneStress2d 1 nodes 4 1 4 3 2 crossSect 1 mat 1 NIP 1

PlaneStress2d 2 nodes 4 1 7 5 4 crossSect 1 mat 1 NIP 1

PlaneStress2d 3 nodes 4 4 5 6 3 crossSect 1 mat 1 NIP 1

PlaneStress2d 4 nodes 4 3 6 8 2 crossSect 1 mat 1 NIP 1

PlaneStress2d 5 nodes 4 5 7 8 6 crossSect 1 mat 1 NIP 1

SimpleCS 1 thick 1.0 width 1.0

IsoLE 1 d 0. E 15.0 n 0.25 talpha 1.0

BoundaryCondition 1 loadTimeFunction 1 prescribedvalue 0.0

NodalLoad 2 loadTimeFunction 1 Components 2 2.5 0.0

ConstantFunction 1 f(t) 1.0

9 Examples - parallel mode

9.1 Node-cut example

The example shows explicit direct integration analysis of simple structure with
two DOFs. The geometry and partitioning is sketched in fig. 3.

#

# partition 0

#

partest.out.0

Parallel test of explicit oofem computation

#

PNlDEIDynamic nsteps 3 dumpcoef 0.0 deltaT 1.0 NodeCutMode

domain 2dTruss

#

OutputManager tstep_all dofman_all element_all
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Figure 3: Node-cut partitioning example: (a) whole geometry, (b) partition 0,
(c) partition 1.

ndofman 2 nelem 1 ncrosssect 1 nmat 1 nbc 2 nic 0 nltf 1

#

Node 1 coords 3 0. 0. 0. bc 2 1 1

Node 2 coords 3 0. 0. 2. bc 2 1 0 Shared partitions 1 1

Truss2d 1 nodes 2 1 2 mat 1 crossSect 1

SimpleCS 1 thick 0.1 width 10.0

IsoLE 1 tAlpha 0.000012 d 10.0 E 1.0 n 0.2

BoundaryCondition 1 loadTimeFunction 1 conditions 1 d 0.0

NodalLoad 2 loadTimeFunction 1 Components 2 0. 1.0

ConstantFunction 1 f(t) 1.0

#

# partition 1

#

partest.out.1

Parallel test of explicit oofem computation

#

PNlDEIDynamic nsteps 3 dumpcoef 0.0 deltaT 1.0 NodeCutMode

domain 2dTruss

#

OutputManager tstep_all dofman_all element_all

ndofman 2 nelem 1 ncrosssect 1 nmat 1 nbc 2 nic 0 nltf 1

#

Node 2 coords 3 0. 0. 2. bc 2 1 0 Shared partitions 1 0

Node 3 coords 3 0. 0. 4. bc 2 1 0 load 1 2

Truss2d 2 nodes 2 2 3 mat 1 crossSect 1

SimpleCS 1 thick 0.1 width 10.0

IsoLE 1 tAlpha 0.000012 d 10.0 E 1.0 n 0.2

BoundaryCondition 1 loadTimeFunction 1 conditions 1 d 0.0

NodalLoad 2 loadTimeFunction 1 Components 2 0. 1.0

ConstantFunction 1 f(t) 1.0
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9.2 Element-cut example

The example shows explicit direct integration analysis of simple structure with
two DOFs. The geometry and partitioning is sketched in fig. 3.
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Figure 4: Element-cut partitioning example: (a) whole geometry, (b) partition 0,
(c) partition 1.

#

# partition 0

#

partest2.out.0

Parallel test of explicit oofem computation

#

PNlDEIDynamic nsteps 5 dumpcoef 0.0 deltaT 1.0 ElementCutMode

domain 2dTruss

#

OutputManager tstep_all dofman_all element_all

ndofman 3 nelem 2 ncrosssect 1 nmat 1 nbc 2 nic 0 nltf 1

#

Node 1 coords 3 0. 0. 0. bc 2 1 1

Node 2 coords 3 0. 0. 2. bc 2 1 0

Node 3 coords 3 0. 0. 4. bc 2 1 0 \

Remote partitions 1 1 load 1 2

Truss2d 1 nodes 2 1 2 mat 1 crossSect 1

Truss2d 2 nodes 2 2 3 mat 1 crossSect 1

SimpleCS 1 thick 0.1 width 10.0

IsoLE 1 tAlpha 0.000012 d 10.0 E 1.0 n 0.2

BoundaryCondition 1 loadTimeFunction 1 conditions 1 d 0.0

NodalLoad 2 loadTimeFunction 1 Components 2 0. 1.0

ConstantFunction 1 f(t) 1.0
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#

# partition 1

#

partest2.out.1

Parallel test of explicit oofem computation

#

PNlDEIDynamic nsteps 5 dumpcoef 0.0 deltaT 1.0 ElementCutMode

domain 2dTruss

#

OutputManager tstep_all dofman_all element_all

ndofman 2 nelem 1 ncrosssect 1 nmat 1 nbc 2 nic 0 nltf 1

#

Node 2 coords 3 0. 0. 2. bc 2 1 0 Remote partitions 1 0

Node 3 coords 3 0. 0. 4. bc 2 1 0 load 1 2

Truss2d 2 nodes 2 2 3 mat 1 crossSect 1

SimpleCS 1 thick 0.1 width 10.0

IsoLE 1 tAlpha 0.000012 d 10.0 E 1.0 n 0.2

BoundaryCondition 1 loadTimeFunction 1 conditions 1 d 0.0

NodalLoad 2 loadTimeFunction 1 Components 2 0. 1.0

ConstantFunction 1 f(t) 1.0

10 Figures

partition local (private) node

shared node

Figure 5: Node-cut partitioning.
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partition local (private) node

shared node (with local DOFs on each partition)

Figure 6: Node-cut partitioning - local constitutive mode.
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Figure 7: Node-cut partitioning - nonlocal constitutive mode.
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shared elements

Figure 8: Element-cut partitioning.

shared elements are duplicated on neighbour partitions
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Figure 9: Element-cut partitioning, local constitutive mode.
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