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Chapter 1

Introduction

This manual describes in details the format and structure of OOFEM text input file. Input file can be prepared
in any text editor or can be generated by a conversion program or FEM pre-processor.

Some parts of this document are relevant only to the parallel enabled version of the code. These parts are
distinguished by typing the text in sans serif font family. The parallel model is based on domain decomposition. In
this mode a set of input files must be provided, each one corresponding to particular process and related domain
partition. The corresponding domain partition input file is referred as partition input file. The name of partition
input file is composed from two parts, the fist part (referred as base name) is user-defined, the second part (called
partition name), divided from first part by full-stop, is corresponding partition rank number. The partitions are
numbered from zero. All partitions input files must have the same base name.

The parallel version requires the unique global numbering for dof managers (nodes) and elements. The global
numbering is necessary to link partitions together. However, the dof managers and optionally elements at interpartion
boundaries, should be explicitly marked, in order to distinguish different type of relations between their remote
counterparts (see further).

1.1 Running the code

The program can be executed by typing
oofem [option [parameter]]
on the command line prompt with the following command line options:

-v Prints oofem version.

-f string path to oofem input file name, if not present, program interactively reads this parameter.When
invoking the solver in parallel mode, only base name of input file should be specified, the partition
name is appended automatically. On the other hand, the partition name is not appended to output
file name, as specified in output file record (see section .

-r int Restarts the analysis from given solution step. The corresponding context file (*.osf) must
exist.

-rn Turns on the equation renumbering. Default is off.

-ar int Restarts the adaptive computation from given solution step. Requires the corresponding

context file (*.0sf) and domain input file (*.din) to exists. The domain input file describes the
new mesh, its syntax is identical to syntax of input file, but it does not contains the output
file record, job description record and analysis record.

-1 int Sets treshold for log messages (Errors=0, Warnings=1, Relevant=2, Info=3, Debug=4).

-qo string | Redirect the standard output stream (stdout) to given file.

-qe string | Redirect standard error stream (stderr) to given file.

-c Forces the creation of context file for each solution step.

The parallel version uses the MP| (Message Passing Interface) standard for message-passing communication.
Thus, to execute OOFEM program for parallel (indicated by the -p flag), users must know the procedure for
executing/scheduling MPI jobs on the particular system(s). For instance, when using the MPICH implementation of
MPI and many others, the following command initiates a program that uses eight processors:



mpirun -np 8 oofem -p program_options

1.2 Syntax and general rules

Input file is composed of records. In the current implementation, each record is represented by one line in input
file. The order of records in file is compulsory, and it has following structure:

1. output file record, see section [2.1

2. job description record, see section
3. analysis record, see section

4. domain record, see section [4]

5. output manager record, see section
. components size record, see section |4.1.1
. node record(s), see section

. element record(s), see section

© o N O

. set record(s), see section

10. cross section record(s), see section

11. material type record(s), see section

12. nonlocal barriers record(s), see section

13. load, boundary conditions record(s), see section

14. initial conditions record(s), see section

15. time functions record(s), see section [{.10]

16. optional xfem manager and associated record(s), see section m

When input line begins with ’#’ character, then it is ignored by the parser and can serve as a comment inside
input file.

The individual records consist of record keyword followed by one or more attributes. Each attribute is
identified by its keyword, which can be followed by attribute value(s). Some attributes have no values. The
order of attributes in the record is optional.

Sometimes, the record keyword itself can be variable, taking on a restricted range of possible values. As
an example, OOFEM has element record, desribing particulat element, and record keyword determines the
particular element type. In this case, the record keyword is preceded by star. We call such record keyword as
entity keyword. The possible substitutions for entity keyword are typed using Typewriter font family. Often,
some attributes are specific to particular entity keyword. Then the general format of record is described and
entity specific attributes are described separately. The possible attributes are then union of general and entity
specific attributes.

# modal records

Node 1 coords 3 0. 0. O.

Node 2 coords 3 0. 0. 2. dofidmask 3 1 2 3
# element record

Truss2d 1 nodes 2 1 2 crossSect 1

Listing 1.1: Example of input records

Each attribute value has a specific type, which describe its size and layout. To describe the type of an
attribute, the following notation is used: Keyword #:ype), where type determines the attribute type and # is
the placeholder for the attribute value. The possible types of attribute values are following:



e in - integer number.

| vall 25

e rn - real number.

| val2 —0.234e—3

e ch - character (usually for description of unknown type (’d’ for displacement, 't for temperature, etc.).

ival3 t i

e ia - integer array. The format of integer array is “size val(1) ... val(size)”, where size, val(1),...,val(size)
are integer numbers. Values are separated by one or more spaces. As an example, consider the integer
array attribute called nodes= {1, 4,23}:

'nodes 3 1 4 23

e ra - real array. The format of real array is “size val(1l) ... val(size)”, where size is integer number and
val(1), ..., val(size) are real numbers. Values are separated by one or more spaces. As an example, consider
the real array attribute called coords= {1.0,2.0,3.0}:

icoords 3 1.0 2.0 3.0 i

e rm - real matrix, format of real matrix is
“rows columns {val(1,1) val(1,2) ...; val(2,1) ...}”, where “rows” and “columns” are integer numbers and

val(1,1), ..., are real numbers. Columns are seperated by space or comma and lines by semicolon. As an
. . . 1.0 —-1.0 0.0
example, consider the real matrix attribute called matl = 20 25 50 |°

[
‘matl 2 3 \{1.0 —1.0; 0.0 2.0; 2.5 5.0\} \
L

e dc - dictionary. Dictionary consist of pairs, each pair has key (character type) and its associated value
(integer type). Format of dictionary is “size key(1) val(1) ... key(size) val(size)”, where size is integer
number, key(1),....key(size) are single character values, and val(1), ..., val(size) are real numbers. Values
are separated by one or more spaces;

Cdictl 2 a 1.0 v 0.0

e rl - range list. Range list syntax is { numberl .. numberN (startl endl) (start2 end2)}. The enclosing
brackets are compulsory. The range list represent list of integer values. Single values can be specified
using single values (numberl, .., NumberN). The range of values (all numbers from startl to endI including
start] and endI can be specified using range value in the form (startl endI). The range is described using
its start and end values enclosed in parenthesis. Any number of ranges and single values can be used to
specify range list.

[
lrangcl {178 (10 20) (25 30) } \

e et - entity type. For example, it describes the finite element type. Possible type values are mentioned in
specific sections.

e s - character string. The string have to be enclosed in quotes (””) following after corresponding keyword.

[ |
lstringl ‘‘string example’’ 1

e expr - function expression. The expression have to be enclosed in quotes (””). The expression is evaluated
by internal parser and represent mathematical expressions as a function of certain variables. The variable
names and meaning are described in specific sections. The usual arithmetic operators like -,+,*,/ are
supported and their evaluation order is taken into account. The evaluation order can be changed using
parenthesis. Several built-in functions are supported (sqrt, sin, cos, tan, atan, asin and acos) - these must
be typed using lowercase letters and their arguments must be enclosed in parenthesis.



[
|exprl “‘2.0%sin(t)/3.07°
L

The general format of record is

record keyword #ypey [attributel keyword #(uwpe) \
\

[attributeXX_keyword #(iype))
The keywords and their values are separated by one or more spaces. Please note, that a single record
cooresponds to one input line in input file.
When some attribute is enclosed in brackets [ |, then it’s use is optional and often overwrites the default
behavior or adds additional (but optional) information or property (for example adds a loading to node).
If any attribute (and thus its keyword and value) is enclosed within angle brackets ( ) then it is related to parallel
version of oofem is not available in sequential version.

Example of input record.
As an example, consider the following record description:
Particle #n) color #n) mass # ) \
coords #@a) name #s)
The following listing shows the corresponding, properly formatted, input record:

[
‘Particle 2 color 5 mass 0.18 coords 3 0.0 1.0 2.0 name ”"P1.36”
L

Listing 1.2: Corresponding input record



Chapter 2

Output and Job description Records

2.1 Output file record

This record has no keywords and contains a character string, which describes the path to output file. If the file
with the same name exists, it will be overwritten.

2.2 Job description record

This record has no keywords and contains a character string, which describes the job. This description will
appear in the output file.



Chapter 3

Analysis record

This record describes the type of analysis, which should be performed. The analysis record can be splitted
into optional meta-step input records (see below). Then certain attributes originally in analysis record can be
specified independently for each meta-step. This is marked by adding “M” superscript to keyword. Then the
attribute format is KeywordM F (type).

The general format of this record can be specified in

e “standard-syntax”

*AnalysisType nsteps #an

[renumber # ()|
[profileopt #n)
attributes #(string)
[ninitmodules #n)
[nmodules #n)]
[nxfemman # ()

—

e “meta step-syntax”

*AnalysisType nmsteps #n)

[ninitmodules #(m]
[nmodules #n)]
[nxfemman # )]

—

immediately followed by nmsteps meta step records with the following syntax:

nsteps #n) attributes F(string)

The nmsteps parameter determines the number of “metasteps”. The meta step represent sequence of
solution steps with common attributes. There is expected to be nmsteps subsequent metastep records.
The meaning of meta step record parameters (or analysis record parameters in “standard syntax”) is
following:

nsteps - determines number of subsequent solution steps within metastep.

renumber - Turns out renumbering after each time step. Necessary when Dirichlet boundary
conditions change during simulation. Can also be turned out by the executeable flag -rn.

profileopt - Nonzero value turns on the equation renumbering to optimize the profile of character-
istic matrix (uses Sloan algorithm). By default, profile optimization is not performed. It will not
work in parallel mode.

attributes - contains the metastep related attributes of analysis (and solver), which are valid for
corresponding solution steps within meta step. If used in standard syntax, the attributes are valid
for all solution step.

ninitmodules - number of initialization module records for given problem. The initialization
modules are specified after meta step section (or after analysis record, if no metasteps are present).
Initialization modules allow to initialize the state variables by values previously computed by external
software. The available initialization modules are described in section .7



— nmodules - number of export module records for given problem. The export modules are specified
after initialization modules. Export modules allow to export computed data into external software
for postprocessing. The available export modules are described in section [5.8

— nxfemman - 1 implies that an XFEM manager is created, 0 implies that no XFEM manager is created.
The XFEM manager stores a list of enrichment items. The syntax of the XFEM manager record
and related records is described in section [.11]

— eetype - optional error estimator type used for the problem. Used for adaptive analysis, but can
also be used to compute and write error estimates to the output files. See adaptive engineering
models for details.

Not all of analysis types support the metastep syntax, and if not mentioned, the standard-syntax is expected.
Currently, supported analysis types are

e Linear static analysis, see section [3.1.2)

e Eigen value dynamic, see section

e Direct explicit nonlinear dynamics, see section [3.1.5]
e Direct explicit (linear) dynamics, see section
e Implicit linear dynamic, see section [3.1.

e Incremental linear static problem, see section [3.1.8

e Non-linear static analysis, see section [3.1.9

3.1 Structural Problems

3.1.1 StaticStructural

StaticStructural nsteps #n)
[deltat #(...)]
[prescribedtimes #(..)]
[
[

stiffmode #(.)]
nonlocalext #.)]
[sparselinsolverparams #:.)]

Static structural analysis. Can be used to solve linear and nonlinear static structural problems, supporting
changes in boundary conditions (applied load and supports). The problem can be solved under direct load or
displacement control, indirect control, or by their arbitrary combination. Note, that the individual solution
steps are used to describe the history of applied incremental loading. The load cases are not supported, for
each load case the new analysis has to be performed. To analyze linear static problem with multiple load
combinations, please use LinearStatic solver.

By default all material nonlinearities will be taken into account, geometrical not. To include geometrically
nonlinear effect one must specify level of non-linearity in element records.

The sparselinsolverparams parameter describes the sparse linear solver attributes and is explained in
section 5.1} Can be used in parallel mode. The input record must be the same for all processors. At present, parallel
version requires PETSc module. The optional parameter deltat defines the length of time step (equal to 1.0
by default). The times corresponding to individual solution times can be specified using optional parameter
prescribedtimes, allowing to input array of discrete solution times, the number of solution steps is then equal
to the size of this array. The nonlocalext turns on the nonlocal constitutive extension. The extension considers a
band of remote elements involved in computation of nonlocal variables (see fig. illustrating this approach for
node-cut partitioning).

—



3.1.2 Linear static analysis

LinearStatic nsteps #n
[sparselinsolverparams #:.)]
[sparselinsolverparams #:...)]

Linear static analysis. Parameter nsteps indicates the number of loading cases. Problem supports multiple
load cases, where number of load cases correspods to number of solution steps, individual load vectors are
formed in individual time-steps. However, the static system is assumed to be the same for all load cases. For
each load case an auxiliary time-step is generated with time equal to load case number.

The sparselinsolverparams parameter describes the sparse linear solver attributes and is explained in
section 5.1} Can be used in parallel mode. The input record must be the same for all processors. At present, parallel
version requires PETSc module.

\
\

3.1.3 LinearStability

LinearStability nroot #an \
Ttolv # () \
[eigensolverparams #¢..]

Solves linear stability problem. Only first nroot smallest eigenvalues and corresponding eigenvectors will be
computed. Relative convergence tolerance is specified using rtolv parameter.

The eigensolverparams parameter describes the sparse linear solver attributes and is explained in section
Can be used in parallel mode. The input record must be the same for all processors. Parallel version requires
PETSc and SLEPc modules.

3.1.4 EigenValueDynamic

EigenValueDynamic nroot #n) \
rtolv #(m) \
[eigensolverparams #:..]
Represents the eigen value dynamic analysis. Only nroot smallest eigenvalues and corresponding eigenvectors
will be computed. Relative convergence criteria is governed using rtolv parameter.
The eigensolverparams parameter describes the sparse linear solver attributes and is explained in section
Can be used in parallel mode. The input record must be the same for all processors. Parallel version requires
PETSc and SLEPc modules.

3.1.5 NIDEIDynamic

NIDEIDynamic nsteps #n) \
dumpcoef #am) \
[deltaT #(m)]

Represents the direct explicit nonlinear dynamic integration. The central difference method with diagonal
mass matrix is used, damping matrix is assumed to be proportional to mass matrix, C = dumpcoef * M,
where M is diagonal mass matrix. deltaT is time step length used for integration, which may be reduced by
program in order to satisfy solution stability conditions. Parameter nsteps specifies how many time steps will
be analyzed.

The parallel version has the following additional syntax:

([nonlocalext])
The nonlocalext turns on the nonlocal constitutive extension. The extension considers a band of remote elements
involved in computation of nonlocal variables (see fig. illustrating this approach for node-cut partitioning).

3.1.6 DEIDynamic

DEIDynamic nsteps #n)
dumpcoef #(n)
[deltaT #(rn)]

—
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Represent the linear explicit integration scheme for dynamic problem solution. The central difference
method with diagonal mass matrix is used, damping matrix is assumed to be proportional to mass matrix,
C' = dumpcoef * M, where M is diagonal mass matrix. deltaT is time step length used for integration, which
may be reduced by program in order to satisfy solution stability conditions. Parameter nsteps specifies how
many time steps will be analyzed.

3.1.7 DIIDynamic

DITDynamic nsteps #n)
deltaT #@n)
alpha #@n)
beta #@m)
Psi #m)

Represents direct implicit integration of linear dynamic problems. Damping is modeled as Rayleigh damping
(¢ = alpha * M + beta * K). Parameter Psi determines integration method used, forPsi = 1 the Newmark and
for Psi > 1.37 the Wilson method will be used. Parameter deltaT is required time integration step length.

—

3.1.8 IncrementalLinearStatic

IncrLinearStatic end0fTimeOfInterest #qn) \
prescribedTimes #a)

Represents incremental linear static problem. The problem is solved as series of linear solutions and is
intended to be used for solving linear creep problems or incremental perfect plasticity.

Supports the changes of static scheme (applying, removing and changing boundary conditions) during the
analysis.

Response is computed in times defined by prescribedTimes array. These times should include times, when
generally the boundary conditions are changing, and in other times of interest. (For linear creep analysis, the
values should be uniformly distributed on log-time scale, if no change in loading or boundary conditions). The
time at the end of interested is specified using end0fTimeOf Interest parameter.

3.1.9 NonLinearStatic

NonLinearStatic

Non-linear static analysis. The problem can be solved under direct load or displacement control, indirect
control, or by their arbitrary combination. Can be used in parallel mode. The input record must be the same for
all processors. At present, parallel version requires PETSc module. By default all material nonlinearities will be
included, geometrical not. To include geometrically nonlinear effect one must specify level of non-linearity in
element records. There are two different ways, how to specify the parameters - the extended and standard
syntax.

Extended syntax

The extended syntax uses the “metastep” concept and has the following format:
NonLinearStatic [nmsteps #n)]
nsteps #n)
[contextOutputStep #n)
[sparselinsolverparams #(Smng)]
[nonlinform #m)]
([nonlocstiff #aw))
([nonlocalext])
([Loadbalancing])
This record is immediately followed by metastep records with the format described below. The analysis
parameters have following meaning

—

e nmsteps - determines the number of “metasteps”, default is 1.

e nsteps - determines number of solution steps.

11



e contextOutputStep - causes the context file to be created for every contextOutputStep-th step and when
needed. Useful for postprocessing.

e The sparselinsolverparams parameter describes the sparse linear solver attributes and is explained in

section [B.1]

e nonlinform - formulation of non-linear problem. If == 1 (default), total Lagrangian formulation in
undeformed original shape is used (first-order theory). If == 2, the equlibrated displacements are added
to original ones and updated in each time step (second-order theory).

e nonlocstiff - determines whether the tangent stiffness extension for nonlocal models is activated. If == 0
(default) this option is not active. If == 1 the support for nonlocal tangent stiffness is activated.

e The nonlocalext turns on the nonlocal constitutive extension. The extension considers a band of remote
elements involved in computation of nonlocal variables (see fig. illustrating this approach for node-cut
partitioning).

e The loadbalancing parameter describes the dynamic load balancing attributes and is explained in section

B3l

The metastep record has the following general syntax:

nsteps F#n)

[controlmode #(n)

[deltat #(m)]

[stiffmode #n)]

[refloadmode # )
solverParams #(
[sparselinsolverparams # (string)|
[donotfixload #o]

—

where
- controlmode - determines the type of solution control used for corresponding meta step. if == 0 then
indirect control will be used to control solution process (arc-length method, default). if == 1 then direct

displacement or load control will be used (Newton-Raphson solver). In the later mode, one can apply the
prescribed load increments as well as control displacements.

- deltaT - is time step length. If not specified, it is set equal to 1,0. Each solution step has associated
the corresponding intrinsic time, at which the loading is generated. The deltaT determines the spacing
between solution steps on time scale.

- stiffMode - If == 0 (default) then tangent stiffness will be used at new step beginning and whenever
numerical method will ask for stiffness update. If == 1 the use of secant tangent will be forced. The
secant stiffness will be used at new step beginning and whenever numerical method will ask for stiffness
update. If == 2 then original elastic stiffness will be used during the whole solution process.

- The refloadmode parameter determines how the reference force load vector is obtained from given
totalLoadVector and initialLoadVector. The initialLLoadVector describes the part of loading which
does not scale. Works only for force loading, other non-force components (temperature, prescribed
displacements should always given in total values). If refloadmode is 0 (rlm_total, default) then the
reference incremental load vector is defined as totalLoadVector assembled at given time. If refloadmode
is 1 (rlm_inceremental) then the reference load vector is obtained as incremental load vector at given time.

- solverParams - parameters of solver. The solver type is determined using controlmode.

- The sparselinsolverparams parameter describes the sparse linear solver attributes and is explained in

section [5.1]

- By default, reached load at the end of metastep will be maintained in subsequent steps as fixed, non
scaling load and load level will be reset to zero. This can be changed using keyword donotfixload,
which if present, causes the loading to continue, not resetting the load level. For the indirect control the
reached loading will not be fixed, however, the new reference loading vector will be assembled for the new
metastep.

12



The direct control corresponds to controlmode=1 and the Newton-Raphson solver is used. Under the direct
control, the total load vector assembled for specific solution step represents the load level, where equilibrium
is searched. The implementation supports also displacement control - it is possible to prescribe one or more
displacements by applying “quasi prescribed” boundary condition(s)ﬂ The load level then represents the time,
where the equilibrium has been found. The Newton-Raphson solver parameters (solverParams) for load-control
are:

maxiter #n)

[minsteplength #(n)]
[minIter #w)
[manrmsteps #n)]
[
[
[

ddm #(ia)] [ddv #(ra)] [ddltf #(in)]
linesearch #n)| [lsearchamp #m)]
lsearchmaxeta #am)| [Lsearchtol #(m)
[nccdg #an) ccdgl #a) ... ccdgN F#o) |
rtolv #(m) [rtolf #(m)] [rtold #(m)]
[initialGuess #(m)

where

—

e maxiter determines the maximum number of iterations allowed to reach equilibrium. If equilibrium is
not reached, the step length (corresponding to time) is reduced.

e minsteplength parameter is the minimum step length allowed.
e minIter - minimum number of iterations which always proceed during the iterative solution.

e If manrmsteps parameter is nonzero, then the modified N-R scheme is used, with the stiffness updated
after manrmsteps steps.

e ddm is array specifying the degrees of freedom, which displacements are controlled. Let the number of
these DOFs is N. The format of ddm array is 2*N dofmanl idofl dofman2 idof2 ... dofmanN idofN, where
the dofmani is the number of i-th dof manager and idofi is the corresponding DOF number.

e ddv is array of relative weights of controlled displacements, the size should be equal to N. The actual
value of prescribed dofs is defined as a product of its weight and the value of load time function specified
using dd1tf parameter (see below).

e ddltf number of load time function, which is used to evaluate the actual displacements of controlled dofs.

e linesearch nonzero value turns on line search algorithm. The 1searchtol defines tolerance (default
value is 0.8), amplification factor can be specified using lsearchamp parameter (should be in interval
(1,10)), and parameter 1searchmaxeta defines maximum limit on the length of iterative step (allowed
range is (1.5,15)).

e nccdg allows to define one or more DOF groups, that are used for evaluation of convergence criteria. Each
DOF is checked if it is a member of particular group and in this case its contribution is taken into account
when evaluating the convergence criteria for that group. By default, if nccdg is not specified, one group
containing all DOF types is created. The value of nccdg parameter defines the number of DOF type
groups. For each group, the corresponding DOF types need to be specified using ccdg# parameter, where
'#’ should be replaced by group number (numbering starts from 1). This array contains the DofIDItem
values, that identify the physical meaning of DOFs in the group. The values and their physical meaning
is defined by DofIDItem enum type (see src/oofemlib/dofiditem.h for reference).

e rtolv determines relative convergence norm (both for displacement iterative change vector and for
residual unbalanced force vector). Optionally, the rtolf and rtold parameters can be used to define
independent relative convergence crteria for unbalanced forces and displacement iterative change. If
the default convergence criteria is used, the parameters rtolv,rtolf, and rtold are real values. If the
convergence criteria DOF groups are used (see bellow the description of nccdg parameter) then they

Hovewer, the problem does not support the changes of static system. But it is possible to apply direct displacement control
without requiring BC applied (see nrsolver documentation). Therefore it is possible to combine direct displacement control with
direct load control or indirect control.
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should be specified as real valued arrays of nccdg size, and individual values define relative convergence
criteria for each individual dof group.

initialGuess is an optional parameter with default vaue 0, for which the first iteration of each step
starts from the previously converged state and applies the prescribed displacement increments. This can
lead to very high strains in elements connected to the nodes with changing prescribed displacements and
the state can be far from equilibrium, which may results into slow convergence and strain localization near
the boundary. If initialGuess is set to 1, the contribution of the prescribed displacement increments to
the internal nodal forces is linearized and moved to the right-hand side, which often results into an initial
solution closer to equilibrium. For instance, if the step is actually elastic, equilibrium is fully restored
after the second iteration, while the default method may require more iterations.

The indirect solver corresponds to controlmode=0 and the CALM solver is used. The value of reference

load

vector is determined by refloadmode parameter mentioned above at the first step of each metastep.

Howewver, the user must ensure that the same value of reference load vector could be obtained for all solution

steps

of particular metastep (this is necessary for restart and adaptivity to work). The corresponding meta step

solver parameters (solverParams) are:

Psi #@m)
MaxIter #(n)
stepLength #(m)

[

rtolv #(rn) [rtolf #(xn)] [rtold #(rn)]

[
[

wher

[
[
[
[
[maxrestarts #am)
[
[
[
[
[

minStepLength #n)
initialStepLength #(m)]
forcedInitialStepLength # ()]
reqlterations #n)]

minIter #m)

manrmsteps #n)]

hpcmode #m] [hpc #w)] [hpew # o)
linesearch #n) [lsearchamp #m)]
lsearchmaxeta #am)| [Lsearchtol #(m)
nccdg #am ccdgl #aa) ... ccdgN #a)

—

pert #a)| [pertw #ca)
rpa #om)| [rseed #n)]
e

Psi - CALM V¥ control parameter. For ¥ = 0 displacement control is applied. For nonzero values the
load control applies together with displacement control (ALM). For large ¥ load control apply.

MaxIter - determines the maximum number of iteration allowed to reach equilibrium state. If this limit
is reached, restart follows with smaller step length.

stepLength - determines the maximum value of arc-length (step length).

minStepLength - minimum step length. The step length will never be smaller. If convergence problems
are encountered and step length cannot be decreased, computation terminates.

initialsteplength - determines the initial step length (the arc-length). If not provided, the maximum
step length (determined by stepLength parameter) will be used as the value of initial step length.

forcedInitialStepLength - When simulation is restarted, the last predicted step length is used. Use
forcedInitialStepLength parameter to override the value of step length. This parameter will also
override the value of initial step length set by initialsteplength parameter.

reqIlterations - approximate number of iterations controlled by changing the step length.
maxrestarts - maximum number of restarting computation when convergence not reached up to MaxIter.

minIter - minimum number of iterations which always proceed during the iterative solution. reqIterations
are set to be the same, MaxIter are increased if lower.
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e manrmsteps - Forces the use of accelerated Newton Raphson method, where stiffness is updated after
manrmsteps steps. By default, the modified NR method is used (no stiffness update).

e hpcmode Parameter determining the alm mode. Possible values are: 0 - (default) full ALM with quadratic
constrain and all dofs, 1 - (default, if hpc parameter used) full ALM with quadratic constrain, taking
into account only selected dofs (see hpc param), 2 - linearized constrain in displacements only, taking
into account only selected dofs with given weight (see hpc and hpcw parameters).

e hpc - Special parameter for Hyper-plane control, when only selected DOFs are taken account in ALM
step length condition. Important mainly for material nonlinear problems with strong localization. This
array selects the degrees of freedom, which displacements are controlled. Let the number of these DOFs
be N. The format of ddm array is 2*N dofman] idofl dofman2 idof2 ... dofmanN idofN, where the dofmani
is the number of i-th dof manager and idofi is the corresponding DOF number.

e hpcw Array of DOF weights in linear constraint. The dof ordering is determined by hpc parameter, the
size of the array should be N.

e linesearch nonzero value turns on line search algorithm. The 1searchtol defines tolerance, amplification
factor can be specified using lsearchamp parameter (should be in interval (1,10)), and parameter
lsearchmaxeta defines maximum limit on the length of iterative step (allowed range is (1.5,15)).

e nccdg allows to define one or more DOF groups, that are used for evaluation of convergence criteria. Each
DOF is checked if it is a member of particular group and in this case its contribution is taken into account
when evaluating the convergence criteria for that group. By default, if nccdg is not specified, one group
containing all DOF types is created. The value of nccdg parameter defines the number of DOF type
groups. For each group, the corresponding DOF types need to be specified using ccdg# parameter, where
'#’ should be replaced by group number (numbering starts from 1). This array contains the DofIDItem
values, that identify the physical meaning of DOFs in the group. The values and their physical meaning
is defined by DofIDItem enum type (see src/oofemlib/dofiditem.h for reference).

e rtolv determines relative convergence norm (both for displacement iterative change vector and for
residual unbalanced force vector). Optionally, the rtolf and rtold parameters can be used to define
independent relative convergence crteria for unbalanced forces and displacement iterative change. If
the default convergence criteria is used, the parameters rtolv,rtolf, and rtold are real values. If the
convergence criteria DOF groups are used (see bellow the description of nccdg parameter) then they
should be specified as real valued arrays of nccdg size, and individual values define relative convergence
criteria for each individual dof group.

e pert Array specifying DOF's that should be perturbed after the first iteration of each step. Let the
number of these DOFs be M. The format of ddm array is 2*M dofmanl idofl dofman2 idof2 ... dofmanN
idofN, where the dofmani is the number of i-th dof manager and idofi is the corresponding DOF number.

e pertw Array of DOF perturbations. The dof ordering is determined by pert parameter, the size of the
array should be M.

e rpa Amplitude of random perturbation that is applied to each DOF.

e rseed Seed for the random generator that generates random perturbations.

Standard syntax

In this case, all parameters (for analysis as well as for the solver) are supplied in analysis record. The default
meta step is created for all solution steps required. Then the meta step attributes are specified within analysis
record. The format of analysis record is then following
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NonLinearStatic nsteps #an)
[nonlocstiff #n)
[contextOutputStep #n)
[controlmode # ()
[deltat #(m)]
rtolv #@m)

[stiffmode #(n)]
1stype #n)
smtype #n)
solverParams #(
[nonlinform # m)]
([nonlocstiff #an))
([nonlocalext])
([Loadbalancing])
The meaning of parameters is the same as for extended syntax.

—

3.1.10 Adaptive linear static

Adaptlinearstatic nsteps #n) \
[sparselinsolverparams #¢..)] \
[meshpackage # ()| \

errorestimatorparams #¢.)

Adaptive linear static analysis. Multiple loading cases are not supported. Due to linearity of a problem, the
complete reanalysis from the beginning is done after adaptive remeshing. After first step the error is estimated,
information about required density is generated (using mesher interface) and solution terminates. If the error
criteria is not satisfied, then the new mesh and corresponding input file is generated and new analysis should
be performed until the error is acceptable. Currently, the available error estimator for linear problems is
Zienkiewicz-Zhu. Please note, that adaptive framework requires specific functionality provided by elements and
material models. For details, see element and material model manuals.

- Parameter nsteps indicates the number of loading cases. Should be set to 1.

- The sparselinsolverparams parameter describes the sparse linear solver attributes and is explained in

section [B.1]

- The meshpackage parameter selects the mesh package interface, which is used to generate information
about required mesh density for new remeshing. The supported interfaces are explained in section
By default, the T3d interface is used.

- The errorerestimatorparams parameter contains the parameters of Zienkiewicz Zhu Error Estimator.
These are described in section 5.4l

3.1.11 Adaptive nonlinear static

Adaptnlinearstatic Nonlinearstaticparams #(
[equilmc #n)
[meshpackage # )|
[eetype #n)]
errorestimatorparams .
Represents Adaptive Non-LinearStatic problem. Solution is performed as a series of increments (loading
or displacement). The error is estimated at the end of each load increment (after equilibrium is reached),
and based on reached error, the computation continues, or the new mesh densities are generated and solution
stops. Then the new discretization should be generated. The truly adaptive approach is supported, so the
computation can be restarted from the last step (see section , solution is mapped to new mesh (separate
solution step) and new load increment is applied. Of course, one can start the analysis from the very beginning
using new mesh. Currently, the available estimators/indicators include only linear Zienkiewicz-Zhu estimator
and scalar error indicator. Please note, that adaptive framework requires specific functionality provided by
elements and material models. For details, see element and material model manuals.

—
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- Set of parameters Nonlinearstaticparams are related to nonlinear analysis. They are described in
section [3.1.9

- Parameter equilmc determines, whether after mapping of primary and internal variables to new mesh the
equilibrium is restored or not before new load increment is applied. The possible values are: 0 (default),
when no equilibrium is restored, and 1 forcing the equilibrium to be restored before applying new step.

- The meshpackage parameter selects the mesh package interface, which is used to generate information
about required mesh density for new remeshing. The supported interfaces are explained in section [5.6
By default, the T3d interface is used.

- Parameter eetype determines the type of error estimator/indicator to be used. The parameters
errorestimatorparams represent set of parameters corresponding to selected error estimator. For
description, follow to section

3.1.12 Free warping analysis

FreeWarping nsteps #an)

Free warping analysis computes the deplanation function of cross section with arbitrary shape. It is done
by solving the Laplace’s equation with automatically generated boundary conditions corresponding to the free
warping problem.

This type of analysis supports only TrWarp elements and WarpingCS cross sections. One external node must
be defined for each warping cross section. The coordinates of this node can be arbitrary but this node must be
defined with parametr DofIDMask 1 24 and one boundary condition which represents relative twist acting on
corresponding warping cross section. No additional loads make sence in free warping analysis.

Parameter nsteps indicates the number of loading cases. Series of loading cases is maintained as sequence
of time-steps. For each load case an auxiliary time-step is generated with time equal to load case number. Load
vectors for each load case are formed as load vectors at this auxiliary time.

3.2 Transport Problems

3.2.1 Stationary transport problem

StationaryProblem nsteps #n) \
[sparselinsolverparams (.. \
[exportfields )

Stationary transport problem. Series of loading cases is maintained as sequence of time-steps. For each load
case an auxiliary time-step is generated with time equal to load case number. Load vectors for each load case
are formed as load vectors at this auxiliary time. The sparselinsolverparams parameter describes the sparse
linear solver attributes and is explained in section

If the present problem is used within the context of staggered-like analysis, the temperature field obtained
by the solution can be exported and made available to any subsequent analyses. For example, temperature
field obtained by present analysis can be taken into account in subsequent mechanical analysis. To allow this,
the temperature must be “exported”. This can be done by adding array exportfields. This array contains
the field identifiers, which tell the problem to register its primary unknowns under given identifiers. See file
field-h. Then the subsequent analyses can get access to exported fields and take them into account, if they
support such feature.

3.2.2 Transient transport problem - linear case

NonStationaryProblem nsteps #n)
deltaT #qm) | deltaTfunction #m)
alpha #(n)
[initT #(rn)]
[Lumpedcapa]
[sparselinsolverparams #.)]
[
[

—

exportfields #a)
changingProblemSize|
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Linear implicit integration scheme for transient transport problems. The generalized midpoint rule
(sometimes called a-method) is used for time discretization, with alpha parameter, which has limits 0 < « < 1.
For a = 0 explicit Euler forward method is obtained, for e = 0.5 implicit trapezoidal rule is recovered, which
is unconditionally stable, second-order accurate in At, and o = 1.0 yields implicit Euler backward method,
which is unconditionally stable, and first-order accurate in At. deltaT is time step length used for integration,
nsteps parameter specifies number of time steps to be solved. It is possible to define deltaTfunction with a
number referring to corresponding time function, see section Variable time step is advantageous when
calculating large time intervals. It is strongly suggested to use nonlinear transport solver due to stability
reasons, see section [3.2.3]

The initT sets the initial time for integration, 0 by default. If lumpedcapa is set, then the stabilization of
numerical algorithm using lumped capacity matrix will be used, reducing the initial oscillations. See section
for an explanation on exportfields.

This linear transport problem supports changes in number of equations. It is possible to impose/remove
Dirichlet boundary conditions during solution. This feature is enabled with changingProblemSize, which
ensures storing solution values on nodes (DoFs) directly. If the problem does not grow/decrease during solution,
it is more efficient to use conventional solution strategy and the parameter should not be mentioned.

Note: This problem type requires transport module and it can be used only when this module is
included in your oofem configuration.

3.2.3 Transient transport problem - nonlinear case

NlTransientTransportProblem nsteps #n)
deltaT #qm | deltaTfunction #n
alpha #(m)
[initT #ew)
[Lumpedcapa #0)]
[nsmax # )]
rtol #(@m)
[manrmsteps #n)
[sparselinsolverparams (..
[exportfields #a)
[changingProblemSize]

Implicit integration scheme for transient transport problems. The generalized midpoint rule (sometimes
called c-method) is used for time discretization, with alpha parameter, which has limits 0 < o < 1. For
a = 0 explicit Euler forward method is obtained, for o = 0.5 implicit trapezoidal rule is recovered, which is
unconditionally stable, second-order accurate in At, and o = 1.0 yields implicit Euler backward method, which
is unconditionally stable, and first-order accurate in At. See matlibmanual.pdf for solution algorithm.

deltaT is time step length used for integration, nsteps parameter specifies number of time steps to be
solved. For deltaTfunction and initT see section[3.2.21 Parameter maxiter determines the maximum number
of iterations allowed to reach equilibrium (default is 30). Norms of residual physical quantity (heat, mass)
described by solution vector and the change of solution vector are determined in each iteration. The convergence
is reached, when the norms are less than the value given by rtol. If manrmsteps parameter is nonzero, then the
modified N-R scheme is used, with the left-hand side matrix updated after manrmsteps steps. nsmax maximum
number of iterations per time step, default is 30. If lumpedcapa is set, then the stabilization of numerical
algorithm using lumped capacity matrix will be used, reducing the initial oscillations.

See the Section for an explanation on exportfields. The meaning of changingProblemSize is given
in Section [3.2.21

Note: This problem type requires transport module and it can be used only when this module is
included in your oofem configuration.

—
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3.3 Fluid Dynamic Problems

3.3.1 Transient incompressible flow - CBS Algorithm

CBS nsteps #an)
deltaT #o
[thetal #(m)]
[thetaQ #(in)]
[cmflag #(m)
[
[

—

scaleflag #an) lscale #qn) uscale #an) dscale #qn)
1stype #an) [smtype F#aw)]

Solves the transient incompressible flow using algorithm based on Characteristics Based Split (CBS, for
reference see O.C.Zienkiewics and R.L.Taylor: The Finite Element Method, 3rd volume, Butterworth-Heinemann,
2000). At present, only semi-implicit form of the algorithm is available and energy equation, yielding the
temperature field, is not solved. Parameter nsteps determines number of solution steps. Parameter deltaT
is time step length used for integration. This time step will be automatically adjusted to satisfy integration
stability limits At < % and At < %, if necessary. Parameters thetal and theta?2 are integration constants,

01,60, € (%, 1). If cmflag is given a nonzero value, then consistent mass matrix will be used instead of (default)
lumped one.

The characteristic equations can be solved in non-dimensional form. To enable this, the scaleflag
should have a nonzero value, and the following parameters should be provided: 1scale, uscale, and dscale
representing typical length, velocity, and density scales.

Parameter 1stype allows to select solver for linear system of equations. Parameter smtype allows to select
sparse matrix storage scheme. The scheme should be compatible with solver type. See section for further
details.

3.3.2 Transient incompressible flow
SUPG/PSPG Algorithm

SUPG nsteps #an
deltaT #n)
rtolv #(m)
[atolv #(rn)]
[stopmaxiter #n)
[alpha )
[
[

cmflag # )

deltatltf #m)

[miflag #(in)]

[scaleflag #an) lscale #an) uscale #n) dscale #n)
[Lstype #an] [smtype #um)]

Solves the transient incompressible flow using stabilized formulation based on SUPG and PSPG stabilization
terms. The stabilization provides stability and accuracy in the solution of advection-dominated problems
and permits usage of equal-order interpolation functions for velocity and pressure. Furthermore, stabilized
formulation significantly improves convergence rate in iterative solution of large nonlinear systems of equations.

By changing the value «, different methods from “Generalized mid-point family” can be chosen, i.e., Forward
Euler (o = 0), Midpoint rule (a = 0.5), Galerkin (o = 2/3), and Backward Euler (oo = 1). Except the first one,
all the methods are implicit and require matrix inversion for solution. Some results form an energy method
analysis suggest unconditional stability for e > 0.5 for the generalized mid-point family. As far as accuracy is
concerned, the midpoint rule is to be generally preferred.

Parameter nsteps determines number of solution steps. Parameter deltaT is time step length used for
integration. Alternatively, the load time function can be used to determine time step length for particular
solution step. The load time function number is determined by parameter deltatltf and its value evaluated
for solution step number should yield the step length.

Parameters rtolv and atolv allow to specify relative and absolute errors norms for residual vector. The
equilibrium iteration process will stopped when both error limits are satisfied or when the number of iteration
exceeds the value given by parameter stopmaxiter.

—
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If cmflag is given a nonzero value, then consistent mass matrix will be used instead of (default) lumped
one.

The algorithm allows to solve the flow of two immiscible fluids in fixed spatial domain (currently only in 2d).
This can be also used for solving free surface problems, where one of the fluids should represent air. To enable
multi-fluid analysis, user should set parameter miflag. The supported values are described in section
Please note, that the initial distribution of reference fluid volume should be provided as well as constitutive
models for both fluids.

The characteristic equations can be solved in non-dimensional form. To enable this, the scaleflag
should have a nonzero value, and the following parameters should be provided: 1scale, uscale, and dscale
representing typical length, velocity, and density scales.

Parameter 1stype allows to select solver for linear system of equations. Parameter smtype allows to select
sparse matrix storage scheme. Please note, that the present algorithm leads to a non-symmetrical system
matrix. The scheme should be compatible with solver type. See section for further details.

3.3.3 Transient incompressible flow
PFEM Algorithm

PFEM nsteps #n
deltaT #n)
material #(n)
CS F(in)
pressure #(n)
[mindeltat #(m)]
[maxiter #(mw)]
[rtolv #(m)]
[rtolp #(m)]

[alphashapecoef #am)

[

[

removalratio #qm)|
scheme # )]
[1stype #qn)| [smtype #um]

Solves the transient incompressible flow using particle finite element method based on the Lagrangian
formulation of Navier-Stokes equations.

Mesh nodes are represented by PFEMParticles which can freely move and even separate from the
main domain. To integrate governing equations in each solution step, a temporary mesh, built from particles,
is needed. The mesh is rebuilt from scratch in each solution step to prevent large distortion of elements.
Paramters cs and material assign types from cross section and material record to created elements. Thus, the
problem is defined without any elements in the input file.

Mesh is generated using Delaunay triangulation and Alpha shape technique for the identification of the
free surface. The parameter alphashapecoef should reflect initial distribution of PFEMParticles. Value
approximately equal to 1,5-multiple of shortest distance of two neighboring particles has been found well. On
the free surface the zero-pressure boundary condition is enforced. This must be defined in boundary condition
record under the number defined by pressure.

Parameter scheme controls whether the equation system for the components of the auxiliary velocity is
solved explicitly (0) or implicitly (1). The last is the default option.

Parameter nsteps determines number of solution steps. Parameter deltaT is time step length used for
integration. To ensure numerical stability, step length is adapted upon mesh geometry and velocity of paricular
nodes. To avoid to short time length a minimal size can be defined by mindeltat. Alternatively prescribing
limit removalratio of the element edge length too close particles can be removed from solution.

Optional parameters rtolv and rtolp allow to specify relative norms for velocity and pressure difference of
two subsequent iteration step. Default values are 1.e-8. By default maximal 50 iterations are performed, if not
specified by maxiter.

Parameter 1stype allows to select solver for linear system of equations. Parameter smtype allows to select
sparse matrix storage scheme. Please note, that the present algorithm leads to a non-symmetrical system
matrix. The scheme should be compatible with solver type. See section for further details.

—
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3.4 Coupled Problems

3.4.1 Staggered Problem

StaggeredProblem (nsteps #an) deltaT #¢m)) | timeDefinedByProb # () \
probl #) prob2 #) \
[stepMultiplier #m)]

Represent so-called staggered analysis. This can be described as an sequence of sub-problems, where the
result of some sub-problem in the sequence can depend on results of previous sub-problems in sequence. Typical
example is heat transfer analysis followed by mechanical analysis taking into account the temperature field
generated by the heat transfer analysis. Similar analysis can be done when coupling moisture transport with
concrete drying strain.

The actual implementation supports only sequence of two sub-problems. The sub-problems are described
using sub-problem input files. The syntax of sub-problem input file is the same as for standalone problem.
The only addition is that sub-problems should export their solution fields so that they became available for
subsequent sub-problems. See the Section [3.2.1

The subproblem input files are described using probl and prob2 parameters, which are strings containing a
path to sub-problem input files, the prob1 contains input file path of the first sub-problem, which runs first for
each solution step, the prob2 contains input file path of the second sub-problem.

There are two options how to control a time step sequence. The first approach uses timeDefinedByProb
which uses time sequence from the corresponding subproblem. The subproblem may specify arbitrary loading
steps and allows high flexibility. The second approach uses the staggered problem to take control over time.
Therefore any sub-problem time-stepping parameters are ignored (even if they are required by sub-problem
input syntax) and only staggered-problem parameters are relevant. deltaT is than a time step length used
for integration, nsteps parameter specifies number of time steps to be solved. stepMultiplier multiplies all
times with a given constant. Default is 1.

Note: This problem type is included in transport module and it can be used only when this module is
configured. Note: All material models derived from StructuralMaterial base will take into account the external
registered temperature field, if provided.

3.4.2 FluidStructure Problem

FluidStructureProblem nsteps #¢n) deltaT #(m)
probl #) prob2 #)
[maxiter #(mw)]
[rtolv #(rn)]
[rtolp #(m)]

Represents a fluid-structure analysis based on StaggeredProblem but providing iterative synchronization of
sub-problems. The implementation uses the the PFEM model for the fluid part. For the structural part a
full dynamic analysis using implicit direct integration DIIDynamid3.1.7)is considered.

The coupling of both phases is based on the idea of enforcing compatibility on the interface. Special fluid
particle are attached to every structural node on the interface that can be hit by the fluid. These special
particles have no degrees of freedom associated, so no equations are solved on them. However, their movement
is fully determined by associated structural nodes. Their velocities governed by the solid part affect the fluid
equation naturally.

This iterative procedure is based on the so-called Dirichlet-Neumann approach. Dirichlet boundary conditions
are the prescribed velocities on the fluid side of the interface, whereas applied forces on the structural side
represent the Neumann boundary conditions.

The convergence criterion is based on the difference of the pressure and velocity values on the interface from
the subsequent iterative steps. Once they are smaller than prescribed tolerance, the iteration is terminated and
solution can proceed to the next step.

The subproblem input files are described using probl and prob2 parameters, which are strings containing a
path to sub-problem input files, the prob1 contains input file path of the first sub-problem, which runs first for
each solution step, the prob2 contains input file path of the second sub-problem. The time step sequence is
controlled by the number of steps nsteps and the time step length deltaT.

Optional parameters rtolv and rtolp allow to specify relative norms for velocity and pressure differnce of
two subsequent iteration step. Default values are 1.e-3. By default maximal 50 iterations are performed, if not

—
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specified by maxiter.
Note: This problem type is included in PFEM module and it can be used only when this module is
configured.
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Chapter 4

Domain record(s)

This set of records describes the whole domain and its type. Depending on the type of problem, there may be
one or several domain records. If not indicated, one domain record is default for all problem types.
The domain type is used to resolve the default number of DOFs in node and their physical meaning. Format
is following
domain *domainType
The *domainType can be one from the following

e The 2dPlaneStress and 2d-Truss modes declare two default dofs per node (u-displacement, v-
displacement),

e The 3d mode declares three default dofs per node (u-displacement, v-displacement, w-displacement),

e The 2dMindlinPlate mode declares three default dofs per node (w-displacent, u-rotation, v-rotation).
Strain vector contains K, Kyyy Kays Yazy Yyz- Stress vector contains my,, Myys May, Qrzy Qyz-

e The 3dShell mode declares six default dofs per node (displacement and rotation along each axis).
e The 2dBeam mode declares three default dofs per node (u-displacement, w-displacement, v-rotation).

e The 2dIncompFlow mode declares three default dofs per node (u-velocity, v-velocity, and pressure).
The default number of dofs per node as well as their physical meaning can be overloaded in particular dof
manager record (see section .

The further records describe particular domain components - OutputManagers, DofManagers, Elements,
CrossSection models, Material Models, Boundary and Initial Conditions and Load time functions.

4.1 QOutput manager record

The output manager controls output. It can filter output to specific solution steps, and within these selected
steps allows also to filter output only to specific dof managers and elements. The format of output manager

record is
OutputManager

tstep_all]
tstep_step #n)
tsteps_out #a)
dofman_all]
dofman_output #a)
dofman_except #a)
element_all]
element output #a)

[element_except #on)
To select all solution steps, in which output will be performed, use tstep_all. To select each tstep_step-nth
step, use tstep_step parameter. In order to select only specific solution steps, the tsteps_outlist can be
specified, supplying solution step number list in which output will be done. The combination of tstep_step
and tsteps_out parameters is allowed.

—
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Output manager allows also to filter output to only specific dof managers and elements. If these specific
members are selected, the output happens only in selected solution steps. The dofman_all and element_all pa-
rameters select all dof managers or elements respectively. Parameter arrays dofman_output and element _output
allow to select only specific members. Numbers of selected members are then contained in dofman_output or
element_output lists respectively. The previously selected members can be explicitly de-selected by specifying
their component numbers in dofman_except or element_except lists. A few examples:
dofman_output {1 3} prints nodes 1,3
dofman_output {(1 3)} prints nodes 1,2,3
element_output {1 3} prints elements 1,3
element_output {(1 3)} prints elements 1,2,3
element_output {(1 3) 5 6} prints elements 1,2,3,5,6

4.1.1 Components size record

This record describes the number of components in related domain. The particular records will follow
immediately in input file. The general format is:

ndofman #(in)

nelem #n)

ncrosssect #n)

nmat #(in)

nbc #(n)

nic #n)

nltf #an)

[nbarrier #n)
where ndofman represents number of dof managers (e.g. nodes) and their associated records, nelem represents
number of elements and their associated records, ncrosssect is number of cross sections and their records,
nmatdnMat is number of material models and their records, nbc represents number of boundary conditions
(including loads) and their records, nic parameter determines the number of initial conditions, and nltf
represents number of time functions and their associated records. The optional parameter nbarrier represents
the number of nonlocal barriers and their records. If not specified, no barriers are assumed.

—

4.2 Dof manager records

These records describe individual DofManager records (i.e. nodes or element sides (if they manage some DOFs)).
The general format is following:
*DofManagerType (num#)n
[1oad #(ra)]
[DofIDMask # ()]
[bC #(ia)]
[ic #(ia)]
[doftype #(a) masterMask #ua)
([shared]) | ([remote]) | ([null])
([partitions #a))
The order of particular records is optional, the dof manager number is determined by (num#)qn) parameter.
The numbering of individual dof managers is arbitrary, it could be even non-continuous. In this context, one
could think of dof manager number as a label that is assigned to individual dof manager and by which the dof
manager is referenced. In parallel mode, the label represents a global id across all partitions.

By default, the nodal DOFs are determined by asking all the connected elements. Specifying additional
dofs can be done using the using the Dof IDMask array which determines their physical interpretation. Each
item of DofIDMask array describes the physical meaning of corresponding DOF in dof manager. Currently
the following values are supported: {u-displacement=1, v-displacement=2, w-displacement=3, u-rotation=4,
v-rotation=>5, w-rotation=6, u-velocity="7, v-velocity=8, w-velocity=9, temperature=10, pressure=11, special
dofs for gradient-type constitutive models=12 and 13, mass concentration=14, special dofs for extended finite
elements (XFEM)=15-30}. It is not allowed to have two DOFs with the same physical meaning in
the same DofManager.

—

24



The applied primary (Dirichlet) boundary conditions are specified using ”bc¢” record, while natural boundary
conditions using ”load” parameter.

e The size of ”bc¢” array (primary be) should be equal to number of DOFs in dof manager and i-th value
relates to i-th DOF - the ordering and physical meaning of DOFs is determined by domain record and
can be optionally specified for each dof manager individually (see next paragraph). The values of this
array are corresponding boundary condition record numbers or zero, if no primary bc is applied to
corresponding DOF. The compatible boundary condition type are required: primary conditions require
”BoundaryCondition” records.

e The load ”array” contains record numbers of natural boundary conditions that are applied. The required
record type for natural condition is ”NodalL.oad”. The actual value is the summation of all contributions,
if more than one natural bc is applied. See section on boundary conditions for the syntax. Please note,
that the values of natural be for individual DOF's are specified in its record, not in dofmanager record.

By default, if "bc” and/or ”"load” parameters are omitted, no primary and/or natural bc are applied.
Analogously, initial conditions are represented using ic array. The size of ic array should be equal to number
of DOFs in dof manager. The values of this array are corresponding initial condition record numbers or zero,
if no initial condition is applied to corresponding DOF (in this case zero value is assumed as value of initial
condition).

Parameters dofType and masterMask allows to connect some dof manager’s dofs (so-called “slave” dofs)
to corresponding dof (according to their physical meaning) of another dof manager (so-called “master” dof).
The master slave principle allows for example simple modeling of structure hinges, where multiple elements
are connected by introducing multiple nodes (with same coordinates) sharing the same displacement dofs and
each one possessing their own rotational dofs. Parameter dofType determines the type of (slave) dof to create.
Currently supported values are 0 for master DOF, 1 for simpleSlave DOF (linked to another single master
DOF), and 2 for general slave dof, that can depend on different DOFs belonging to different dof managers. If
dofType is not specified, then by default all DOFs are created as master DOFs. If provided, masterMask is
also required. The meaning of masterMask parameter is depending on type of particular dofManager, and will
be described in corresponding sections.

The shared indicates, that dofmanager is shared by neighboring partitions. The contributions from all contributing
domains are summed. Typical for node cut algorithm (see figures and .

Remote DofManager is indicated by remote parameter. Then DofManager in active domain is only mirror of
some remote DofManager and it is necessary to copy remote values into local ones. Typical for element cut (see fig.
. The null parameter indicates so-called null DofManager. The null DofManager should be shared only by
remote elements (these are only introduced for nonlocal constitutive model to allow effective local averaging, so only
local material value to be averaged are transferred for these remote elements). Null nodes are therefore used only for
computing real integration point coordinates of remote elements and there is no reason to maintain their unknowns
(they have no equation number assigned, see fig. . They do not contribute to local partition governing equation.
Only one of the null remote shared parameters can be used for particular DofManagers. If no one is used, the
DofManager is maintained as local for particular partition.

The list of remote partitions sharing corresponding DofManager or list containing remote partition containing
remote DofManager counterpart is specified using partitions parameter. The local partition should not be included
in the list. The slaves are allowed, but masters have to be in the same partition. The masters can be again remote
copies.

Supported DofManagerType keywords are

e Node record
Node coords #ea) \
[lCS #(ra)}
Represent an abstraction for finite element node. The node coordinates in space (given by global
coordinate system) are described using coords attribute. This array contains x, y and possibly z (depends
on problem under consideration) coordinate of node. By default, the coordinate system in node is global
coordinate system. User defined local coordinate system in node is described using lcs array. This array
contains six numbers, where the first three numbers represent a directional vector of the local x-axis, and
the next three numbers represent a directional vector of the local y-axis. The local z-axis is determined
using a vector product. A right-hand coordinate system is assumed. If user defined local coordinate
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system in node is specified, then the boundary conditions and applied loading are specified in this local
coordinate system. The reactions and displacements are also in lcs system at the output.

The node can create only master DOFs and SimpleSlave DOFs, so the allowable values of dofType array
are in range 0,1. For the Node dof manager, the masterMask is the array of size equal to number of
DOFs, and the i-th value determines the master dof manager, to which i-th dof is directly linked (the dof
with same physical meaning are linked together). The local coordinate system in node with same linked
dofs is supported, but it should be exactly the same as on master.

Rigid arm record

RigidArmNode coords #¢a \
master #n) \
[masterMask # ] \
[les #ea)
Represent node connected to other node (called master) using rigid arm. Rigid arm node DOFs can be
linked to master (via rigid arm transformation) or can be independent. The rigid arm node allows to
avoid very stiff elements used for modelling the rigid-arm connection. The rigid arm node maps its dofs
to master dofs using simple transformations (small rotations are assumed). Therefore, the contribution to
rigid arm node can be localized directly to master related equations. The rigid arm node can not have its
own boundary or initial conditions, they are determined completely from master dof conditions. Currently
it is possible to map only certain dofs - see dofType. Linked DOFs should have dofType value equal to 2,
non-linked (primary) DOF's 0.

Rigid arm node can be loaded independently of master. The node coordinates in space (given by global
coordinate system) are described using coords field. This array contains x, y and possibly z (depends on
problem under consideration) coordinate of node. The master parameter is the master node number,
to which rigid arm node dofs are mapped. The rigid arm node and master can have arbvitrary local
coordinate systems (if not specified, global one is assumed).

The optional parameter masterMask allows to specify how particular mapped DOF depends on master
DOFs. The size of masterMask array should be equal to number of DOFs. For all linked DOF's (with
corresponding dofType value equal to 2) the corresponding value of masterMask array should be 1.

The local coordinate system in rigid arm node is supported, the coordinate system in master and slave
can be different. If no lcs is set, global one is assumed.the global cs applies.

Hanging node

HangingNode coords #a)
dofType #(n)
[masterElement #(n)]
[masterRegion #n]

—

Hanging node is connected to an a master element using generalized interpolation. Hanging node posses
no degrees of freedom (except unlined dofs) - all values are interpolated from corresponding master
elements and its DOF's. arbitrary FE mesh of concrete specimen or to facilitate the local refinement of
FE mesh. The hanging nodes can be in a chain.

The contributions of hanging node are localized directly to master related equations. The hanging node
can have its own boundary or initial conditions, but only for primary unlinked DOFs. For linked DOF's,
these conditions are determined completely from master DOF conditions. The local coordinate system
should be same for all master nodes. The hanging node can be loaded independently of its master.

Values of array dofType can have following values: O-primary DOF, 2-linked DOF'.

The value of masterElement specifies the element number to which the hanging node is attached. The
node can be attached to any arbitrary coordinate within the master element. The element must support
the necessary interpolation classes. The same interpolation for unknowns and geometry is assumed.

The no (or -1) value for masterElement is supplied, then the node will locate the element closest to its
coordinate. If no (or zero) value for masterRegion is supplied, then all regions will be searched, otherwise
only the elements in cross section with number masterRegion. If masterElement is directly supplied
masterRegion is unused.
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e Slave node
SlaveNode coords #(a)
dofType #(n)
masterDofMan # )
weights #qa)

—

Works identical to hanging node, but the weights (weights) are not computed from any element, but
given explicitly, as well as the connected dof managers (masterDMan).
e Element side

ElementSide
Represents an abstraction for element side, which holds some unknowns.

e PFEMParticle

PFEMParticle coords #a)
Represent the particle used in PFEM analysis.

e InteractionPFEMParticle
InteractionPFEMParticle coords #a) \
bc #a) \
coupledNode #(n)
Represent a special particle used in the PFEM-part of the FluidStructureProblem. The particle is
attached to coupledNode from the structural counter part. InteractionBoundaryCondition must be
prescribed under bc to access the velocities from solid nodes.

4.3 Element records

These records specify a description of particular elements. The general format is following:
*ElementType (num#)n)
mat #@n) crossSect #(n) nodes )
[bodyLoads #(a)| [boundaryLoads # )]
[activityltf #am] [1cs #ea)
([partitions #qa)|) ([remote])

The order of element records is optional, the element number is determined by (num#)en) parameter. The
numbering of individual elements is arbitrary, it could be even non-continuous. In this context, one could think
of element number as a label that is assigned to individual elements and by which the element is referenced. In
parallel mode, the label represents a global id across all partitions.

Element material is described by parameter mat, which contains corresponding material record number.
Element cross section is determined by cross section with crossSect record number. Element dof managers
(nodes, sides, etc.) defining element geometry are specified using nodes array.

Body load acting on element is specified using bodyLoads array. Components of this array are corresponding
load record numbers. The loads should have the proper type (body load type), otherwise error will be generated.

Boundary load acting on element boundary is specified using boundaryLoads array. The format of this
array is

—

2 size lnum(1) id(1) ... lnum(size) id(size),

where size is total number of loadings applied to element, {num(i) is the applied load number, and id() is the
corresponding entity number, to which the load is applied (for example a side or a surface number). The entity
numbering is element dependent and is described in element specific sections. The applied loads must be of
proper type (boundary load type), otherwise error is generated.

The support for element insertion and removal during the analysis is provided. One can specify optional
time function (identified by its id using activityltf parameter). The nonzero value of this time function
indicates, whether the element is active (nonzero value, the default) or inactive (zero value) at particulat
solution step. Tested for structural and transport elements. This feature allows considering temperature
evolution of layered casting of concrete, where certain layers needs to be inactive before they are cast. See
a corresponding example in oofem tests how to enforce hydrating material model, boundary conditions and
element activity acting concurrently.
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Orientation of local coordinates can be specified using lcs array. This array contains six numbers, where
the first three numbers represent a directional vector of local x-axis, and the next three numbers represent a
directional vector of local y-axis. The local z-axis is determined using the vector product. The lcs array on
the element is particularly useful for modeling of orthotropic materials which follow the element orientation.
On a beam or truss element, the 1cs array has no effect and the 1D element orientation is aligned with the
global xx component.

The remote forces the element to be remote element. Remote element does not contribute to local partition
governing equation. They are introduced in order to implement band of elements involved in computation of nonlocal
variables (see fig. illustrating this approach for node-cut partitioning). They role is to provide local mirror of
corresponding remote partition element integration point values which undergo nonlocal averaging on local partition.
If not used, element is assumed to be local partition element. When remote is used, the partitions parameter
should contain remote partition number, where corresponding element is local (this array should have size equal to
one).

Available material models, their outline and corresponding parameters are described in separate Element
Library Manual.

4.4 Set records

Sets specify regions of the geometry as a combination of volumes, surfaces, edges, and nodes. The main usage
of sets are to connect regions of elements to a given cross section or apply a boundary condition, though sets
can be used for many other things as well.

Set (num#)n) \
[elements #Ga)] [elementranges #a) [allElements] \
[nodes #(w)| [noderanges #ay| [allNodes] \

[elementboundaries #a)| [elementedges # )

Volumes (elements) and nodes can be specified using either a list, elements, nodes, or with a range
list elementranges, noderanges. Edges elementedges, and surfaces elementboundaries, are specified in a
interleaved list, every other number specifying the element, and edge/surface number (the total length of the
list being twice the number of surfaces/edges). The internal numbering of edges/surfaces is available in the
Element Library Manual.

Note that edge loads (singular loads given in “newton per length” (or equivalent), should be applied to
elementedges, surface loads “newton per area” on elementboundaries, and bulk loads “newton per volume’
on elements.

Example 1: A deadweight (gravity) load would be applied to the elements in a set, while a distributed line
load would be applied to the midline “edge” of the beam element, thus should be applied to a elementedges
set. In the latter case, the midline of the beam is defined as the first (and only) “edge” of the beam.

Example 2: Axisymmetric structural element analysis: A deadweight load would be applied to elements in
a set. A external pressure would be defined as a surface load an be applied to the elementboundaries in a set.
The element integrates the load (analytically) around the axis, so the load would still count as a surface load.

)

4.5 Cross section records

These records specify a cross section model descriptions. The general format is following;:
*CrossSectType (num#)n)

The order of particular cross section records is optional, cross section model number is determined by
(num#)an) parameter. The numbering should start from one and should end at n, where n is the number of
records.

The crossSectType keyword can be one from following possibilities

e Integral cross section with constant properties
SimpleCS [thick #aw)] [width #0n)| [area #ew) \
[iy #ew] [iz #en)] [ik #en) \
[shearareay # ()| [shearareaz #n)| beamshearcoeff #m)
Represents integral type of cross section model. In current implementation, such cross section is described
using cross section thick (thickVal) and width (widthVal). For some problems (for example 3d), the
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corresponding volume and cross section dimensions are determined using element geometry, and then
you can omit some (or all) parameters (refer to documentation of individual elements for required cross
section properties). Parameter area allows to set cross section area, parameters iz, iz, and ik represent
inertia moment along y and z axis and torsion inertia moment. Parameter beamshearcoeff allows to
set shear correction factor, or equivalent shear areas (shearareay and shearareaz parameters) can
be provided. These cross section properties are assumed to be defined in local coordinate system of element.

Integral cross section with variable properties
VariableCS [thick #(expr)| [Wwidth #(expn)| [aTea #(exon) \
[1y #exen)] [iz #exon] [k #exon)] \
[shearareay #(exon)| [shearareaz #(expr)]
Represents integral type of cross section model, where individual cross section parameters can be expressed
as an arbitrary function of global coordinates x,y,z. Similar to SimpleCS, for some problems (for example
3d), the corresponding volume and cross section dimensions are determined using element geometry, then
you can omit many (or some) parameters (refer to documentation of individual elements for required cross
section properties). Parameter area allows to set cross section area, parameters iz, iz, and ik represent
inertia moment along y and z axis and torsion inertia moment. Parameters (shearareay and shearareaz
determine shear area, which is required by beam and plate elements. All cross section properties are
assumed to be defined in local coordinate system of element.

Layered cross section
LayeredCS nlayers #n) \

LayerMaterials #a) \
Thicks #(a) Widths #(a) \
midSurf #n)

Represents the layered cross section model, based on geometrical hypothesis, that cross sections remain

planar after deformation. Number of layers is determined by nLayers parameter. Materials for each layer

are specified by LayerMaterials array. For each layer is necessary to input geometrical characteristic,

thick - using Thicks array, and width - using Widths array. Position of mid surface is determined by its

distance from bottom of cross section using midSurf parameter (normal and momentum forces are then

computed with regard to it’s position). Elements using this cross section model must implement layered

cross section extension. For information see element library manual.

Fibered cross section
FiberedCS nfibers #@n) fibermaterials #a) \
\

thicks #(a) widths #(a) thick #en) width #m)

fiberycentrecoords #ua) fiberzcentrecoords #(a)
Cross section represented as a set of rectangular fibers. It is based on geometrical hypothesis, that cross
sections remain planar after deformation (3d generalization of layered approach for beams). Paramater
nfibers determines the number of fibers that together form the overall cross section. The model requires
to specify a material model corresponding to particular fiber using fibermaterials array. This array
should contain for each fibre corresponding material model number (the material model specified on
element level has no meaning in this particular case). The geometry of cross section is determined
from fiber dimensions and fiber positions, all input in local coordinate system of the beam
(yz plane). The thick and width of each fiber are determined using thicks and widths arrays. The
overall thick and width are specified using parameters thick and width. Positions of particular fibers
are specified by providing coordinates of center of each fiber using fiberycentrecoords array for
y-coordinates and fiberzcentrecoords array for z-coordinates.

Warping cross section

WarpingCS WarpingNode # ()
Represents the cross section for Free warping analysis, see section The WarpingNode parametr
defines the number of external node with prescribed boundary condition which corresponds to the relative
twist of warping cross section.
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4.6 Material type records

These records specify a material model description. The general format is following:
*MaterialType (num#)an) d #on)

The order of particular material records is optional, the material number is determined by (num#):n)
parameter. The numbering should start from one and should end at n, where n is the number of records.
Material density is compulsory parameter and it’s value is given by d parameter.

Available material models, their outline and corresponding parameters are described in separate Material
Library Manual.

4.7 Nonlocal barrier records

Nonlocal material models of integral type are based on replacement of certain suitable local quantity in local
constitutive law by their nonlocal counterparts, that are obtained as weighted average over some characteristic
volume. The weighted average is computed as a sum of a remote value multiplied by weight function value.
The weight function typically depend on a distance between remote and receiver points and decreases with
increasing distance. In some cases, it is necessary to disregard mutual interaction between some points (for
example if they are on the opposite sides of a thin notch, which prevents the nonlocal interactions to take
place). The barriers are the way how to introduce these constrains. The barrier represent a curve (in 2D)
or surface (in 3D). When the line connecting receiver and remote point intersects a barrier, the barriers is
activated and the corresponding interaction is not taken into account.
Currently, the supported barrier types are following:

e Polyline barrier

polylinebarrier (num#)in) vertexnodes #ua) \
[xcoordindx #n) [ycoordindx #m)
This represents a polyline barrier for 2D problems. Barrier is a polyline, defined as a sequence of nodes
representing vertices. The vertices are specified using parameter vertexnodes array, which contains the
node numbers. The optional parameters xcoordindx and ycoordindx allow to select the plane (xy, yz,
or xz), where the barrier is defined. The xcoordindx is the first coordinate index, ycoordindx is the
second. The default values are 1 for xcoordindx and 2 for ycoordindx, representing barrier in xy plane.

e Symmetry barrier

symmetrybarrier (num#)in) origin #ea) \
normals #a) activemask #ia)

Implementation of symmetry barier, that allows to specify up to three planes (orthogonal ones) of
symmetry. This barrier allows to model the symmetry of the averaged field on the boundary without the
need of modeling the other part of structure across the plane of symmetry. It is based on modifying the
integration weights of source points to take into account the symmetry. The potential symmetry planes are
determined by specifying orthogonal right-handed coordinate system, where axes represent the normals
of corresponding symmetry planes. Parameter origin determines the origin of the coordinate system,
the normals array contains three components of x-axis direction vector, followed by three components
of y-axis direction vector (expressed in global coordinate system). The z-axis is determined from the
orthogonality conditions. Parameter activemask allows to specify active symmetry planes; i-th nonzero
value activates the symmetry barrier for plane with normal determined by corresponding coordinate axis
(x=1, y=2, z=3).

4.8 Load and boundary conditions

These records specify description of boundary conditions. The general format is following:
*EntType (num#)n \
loadTimeFunction #n) \
[valType #aw| [dofs #w)] \
[isImposedTimeFunction #(n)]
The order of particular records is optional, boundary condition number is determined by (num#)») parameter.
The numbering should start from one and should end at n, where n is the number of records. Time function
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value (given by loadTimeFunction parameter) is a multiplier, using which each component (value of loading or
value of boundary condition) describes its time variation. The optional parameter valType allows to determine
the physical meaning of bc value, which is sometimes required. Supported values are (1 - temperature, 2 -
force/traction, 3 - pressure, 4 - humudity, 5 - velocity, 6 - displacement). Another optional parameter dofs is
used to determine which dofs the boundary condition should act upon. It is not relevant for all BCs..

The nonzero value of isImposedTimeFunction time function indicates that given boundary condition is
active, zero value indicates not active boundary condition in given time (the bc does not exist). By default, the
boundary condition applies at any time.

Currently, EntType keyword can be one from

e Dirichlet boundary condition

BoundaryCondition prescribedvalue #@m) \
[d #n)]
Represents boundary condition. Prescribed value is specified using prescribedvalue parameter. The
physical meaning of value is fully determined by corresponding DOF. Optionally, the prescribed value
can be specified using d parameter. It is introduced for compatibility reasons. If prescribedvalue is
specified, then d is ignored.

e Prescribed gradient boundary condition (Dirichlet type)

PrescribedGradient gradient #@m) \
[cCoords #(a]

Prescribes v; = d;;j(z; — Z;) or s = dy;(x; — T;) where v; are primary unknowns, z; is the coordinate
of the node, Z is cCoords and d is gradient. The parameter cCoords defaults to zero. This is typical
boundary condition in multiscale analysis where d = d,.s would a macroscopic gradient at the integration
point, i.e. this is a boundary condition for prolongation. It is also convenient to use when one wants to
test a arbitrary specimen for shear.

e Mixed prescribed gradient / pressure boundary condition (Active type)

MixedGradientPressure* devGradient #a)
pressure #(m)
[cCoord # ()
All boundary conditions of ensures that the deviatoric gradient and pressure is at least weakly fullfilled

on the prescribed domain. They are used for computational homogenization of incompressible flow or
elasticity problems.

—

e Mixed prescribed gradient / pressure boundary condition (Weakly periodic type)
MixedGradientPressureWeaklyPeriodic order #n)

Prescribes a periodic constant (unknown) stress tensor along the specified boundaries. For order set to
1, one obtains the same results as the Neumann boundary condition.

e Mixed prescribed gradient / pressure boundary condition (Neumann type)

MixedGradientPressureNeumann

Prescribes a constant (unknown) deviatoric stress tensor along the specified boundaries. Additional
unknowns appears, o dey, which is handled by the boundary condition itself (no control from the input
file). The input devGradient is weakly fulfilled (homogenized over the elementsides). As with the the
Dirichlet type, the volumetric gradient is free. This is useful in multiscale computations of RVE’s that
experience incompressible behavior, typically fluid problems. In that case, the element sides should cover
the entire RVE boundary. It is also convenient to use when one wants to test a arbitrary specimen for
shear, with a free volumetric part (in which case the pressure is set to zero). Symmetry is not assumed,
so rigid body rotations are removed, but translations need to be prescribed separately.

e Mixed prescribed gradient / pressure boundary condition (Dirichlet type)
MixedGradientPressureDirichlet

Prescribes v; = dgev,ij(®j — ;) + dyol(z; — Z;), and a pressure p. where v; are primary unknowns, x;
is the coordinate of the node, Z is cCoords and dg., is devGradient. The parameter cCoords defaults
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to zero. An additional unknown appears, dyo1, which is handled by the boundary condition itself (no
control from the input file). This unknown is in a way related to the applied pressure. This is useful in
multiscale computations of RVE’s that experience incompressible behavior, typically fluid problems. It is
also convenient to use when one wants to test a arbitrary specimen for shear, with a free volumetric part
(in which case the pressure is set to zero).

Nodal fluxes (loads)

NodalLoad components #wa) \
[cstype #n)
Concentrated nodal load. The components of nodal load vector are given by components parameter. The
size of this vector corresponds to a total number of nodal DOFs, and i-th value corresponds to i-th DOF
in associated dof manager. The load can be defined in global coordinate system (cstype = 0) or in entity
- specific local coordinate system (cstype = 1, default).

PrescribedTractionPressureBC

Represents pressure boundary condition (of Dirichlet type) due to prescribed tractions. In CBS algorithm
formulation the prescribed traction boundary condition leads indirectly to pressure boundary condition in
corresponding nodes. This boundary condition implements this pressure be. The value of bc is determined
from applied tractions, that should be specified on element edges/surfaces using suitable boundary loads.

Linear constraint boundary condition

LinearConstraintBC weights #a)
[weightsLtf #w)]
dofmans # ()
dofs #in)
rhs #@m)

[rhSLtf #(in)]
lhstype #a)
rhsType #a)

—

This boundary condition implements a linear constraint in the form ), w;r; = ¢, where 7; are un-
knowns related to DOFs determined by dofmans and dofs, the weights are determined by weights and
weightsLtf. The constant is determined by rhs and rhsLtf parameters. This boundary condition is
introduced as additional stationary condition using Lagrange multiplier, which is an additional degree of
freedom introduced by this boundary condition.

The individual DOF's are determined using dof manager numbers (dofmans array) and corresponding
DOF indices (dofs). The weights corresponding to participating DOFs are specified using weights array.
The weights are multiplied by value returned by load time function, associated to individual weight using
optional weightsLtf array. By default, all weights are set to 1. The constant c¢ is determined by rhs
parameter and it is multiplied by the value of load time function, specified using rhsLtf parameter, or
by 1 by default. The characteristic component, to which this boundary condition contributes must be
identified using lhstype and rhsType parameters, values of which are corresponding to CharType enum.
The left hand side contribution is assembled into terms identified by 1hstype. The rhs contribution is
assembled into the term identified by rhsType parameter. Note, that multiple values are allowed, this
allows to select all variants of stifness matrix, for example. Note, that the size of dofmans, dofs, weights,
weightsLtf arrays should be equal.

InteractionBoundaryCondition

InteractionBoundaryCondition

Is a special boundary condition prescribed on InteractionPFEMParticles in the PFEM part of the
FluidStructureProblem. This sort of particles is regarded as it would have prescribed velocities, but the
values change dynamically, as the solid part deforms. The velocities are obtained from coupled structural
nodes.
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Body loads

e Volume flux (load)

DeadWeight components #(a)
Represents dead weight loading applied on element volume (for structural elements). For transport
problems, it represents the internal source, i.e. the rate of (heat) generated per unit volume. The
magnitude of load for specific i-th DOF is computed as product of material density, corresponding volume
and i-th member of components array.

e Structural temperature load

StructTemperatureLoad components #a)

Represents temperature loading imposed to some elements. The members of components array represent
the change of temperature (or change of temperature gradient) corresponding to specific element strain
components. See element library manual for details.

e Structural eigenstrain load

StructEigenstrainLoad components #a) Prescribes
eigenstrain (or stress-free strain) to a structural element. The array of components is defined in the
global coordinate system. The number of components corresponds to a material mode, e.g. plane stress
has three components and 3D six. Periodic boundary conditions can be imposed using eigenstrains and
master-slave nodes. Consider decomposition of strain into average and fluctuating part

e(x) = (e) + " (x) (4.1)

where () can be imposed as eigenstrain over the domain and the solution gives the fluctuating part
e*(x). Master-slave nodes have to interconnect opposing boundary nodes of a unit cell.

Boundary loads

e Constant edge fluxes (load)
ConstantEdgeLoad

loadType #(n)
components #ra)
[dofexcludemask # )]
[csType #n)
[properties #o)]
[propertytf # o]

—

e Constant surface fluxes (load)

ConstantSurfaceLoad

loadType #(n)
components #ra)
[dofexcludemask # )]
[csType #n)
[properties #o)]
[propertytf # o)

Represent constant edge/surface loads or boundary conditions. Parameter loadType distinguishes the

type of boundary condition. Supported values are specified in betype.h:

—

— loadType = 2 prescribed flux input (Neumann boundary condition),

— loadType = 3 uniform distributed load or the convection (Newton) BC. Parameter components
contains the environmental values (temperature of the environment) corresponding to element
unknowns, and properties dictionary should contain value of transfer (convection) coefficient
(assumed to be a constant) under the key ’a’,
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— loadType = 7 specifies radiative boundary condition (Stefan-Boltzmann). It requires to specify
emmisivity € € (0,1), the components array contains the environmental values (temperature of the
environment). Default units are Celsius. Optional parameter temper0ffset = 0 can be used to
calculate in Kelvin.

If the boundary condition corresponds to distributed force load, the components array contains components
of distributed load corresponding to element unknowns. The load is specified for all DOF's of object to
which is associated. For some types of boundary conditions the zero value of load does not mean that the
load is not applied (Newton’s type of bc, for example). Then some mask, which allows to exclude specific
dofs is necessary. The dofexcludemask parameter is introduced to alow this. It should have the same
size as components array, and by default is filled with zeroes. If some value of dofExcludeMask is set to
nonzero, then the corresponding componentArray is set to zero and load is not applied for this DOF. If
the boundary condition corresponds to prescribed flux input, then the components array contains the
components of prescribed input flux corresponding to element unknowns.

The properties can vary in time. Each property can have associated time function which determines
its time variation. The time functions are set up using optional propertytf dictionary, containing for
selected properties the corresponding time function number. The time function must be registered under
the same key as in properties dictionary. The property value is then computed by product of property
value (determined by properties) and corresponding time function evaluated at given time. If no time
function provided for particula property, a unit constant function is assumed.

The load can be defined in global coordinate system (csType = 0, default) or in entity - specific local
coordinate system (csType = 1).
e Linear edge flux (load)
LinearEdgeLoad

loadType #n
components #a)
[dofexcludemask # ()]
[csType #an)
Represents linear edge load. The meanings of parameters csType and loadType are the same as for
ConstantEdgeLoad. In components array are stored load components for corresponding unknowns
at the beginning of edge, followed by values valid for end of edge. The load can be defined in global
coordinate system (csType = 0, default) or in entity - specific local coordinate system (csType = 1).

—

e InteractionLoad
InteractionLoad ndofs #n)
loadType #n)
Components #(a)
[csType #n)
coupledparticles #a)

—

Represents a fluid pressure induced load in the solid part of the FluidStructureProblem. The meanings of
parameters ndofs, csType, and loadType are the same as for LinearEdgeLoad. In Components array
are stored load components for corresponding unknowns at the beginning of edge (ndofs values), followed
by values valid for end of edge (ndofs values). The load should be defined in global coordinate system
(csType = 0) as it acts in normal direction of the edge. Array coupledparticles assign PFEMParticles
from the fluid part of the problem providing fluid pressure.

4.9 Initial conditions

These records specify description of initial conditions. The general format is following:
InitialCondition (num#)(n) \
conditions #(dc)
The order of particular records is optional, load, boundary or initial condition number is determined by
(num#)an) parameter. The numbering should start from one and should end at n, where n is the number of
records. Initial parameters are listed in conditions dictionary using keys followed by their initial values. Now
v’ key represents velocity and 'a’ key represents acceleration.
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4.10 Time functions records

These records specify description of time functions, which generally describe time variation of components
during solution. The general format is following:
*TimeFunctType (num#)cn) \
[initialValue #(m)

The order of these records is optional, time function number is determined by (num#)in) parameter. The
initialValue parameter allows to control the way, how increment of receiver is evaluated for the first solution
step. This first solution step increment is evaluated as the difference of value of receiver at this first step
and given initial value (which is by default set to zero). The increments of receiver in subsequent steps are
computed as a difference between receiver evaluated at given solution step and in previous step.

The numbering should start from one and should end at n, where n is the number of records.

Currently, TimeFunctType keyword can be one from

e Constant function
ConstantFunction f(t) #um

Represents the constant time function, with value £ (t).

e Peak function
PeakFunction t #n) \
£(t) #om
Represents peak time function. If time is equal to t value, then the value of time function is given by
f (t) value, otherwise zero value is returned.

e Piecewise function
PiecewiseLinFunction [nPoints #@m) t #aa) £(t) #ew) [ datafile #esuing)]

Represents the piecewise time function. The particular time values in t array should be sorted according
to time scale. Corresponding time function values are in f (t) array. Value for time, which is not present
in t is computed using liner interpolation scheme. Number of time-value pairs is in nPoints parameter.

The second alternative allows reading input data from an external ASCII file. A hash commented line
(#) is skipped during reading. File name should be eclosed with ” 7.

e Heaviside-like time function

HeavisideLTF origin #am) \
value #@n)

Up to time, given by parameter origin, the value of time function is zero. If time greater than origin
parameter, the value is equal to parameter value value.

e User defined
USI‘DefLTF f (t) #(expr)
[dfdt (£) #(expr)]
[d2fdt2(t) #(expr)}

Represents user defined time function. The expressions can depend on “t” parameter, for which actual
time will be substituted and expression evaluated. The function is defined using f (t) parameter, and
optionally, its first and second time derivatives using dfdt (t) and d2fdt2(t) parameters. The first and
second derivatives may be required, this depend on type of analysis.

—

Very general, but relatively slow.

4.11 Xfem manager record and associated records

This record specifies the number of enrichment items and simulation options common for all enrichment items.
Functions used for enrichment (e.g. Heaviside, abs or branch functions) are not specified here, they are specified
for each enrichment item separately. The same holds for the geometrical representation of each enrichment
item (e.g. a polygon line or a circle). Currently, OOFEM supports XFEM simulations of cracks and material
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interfaces in 2D. The input format for the XFEM manager is:
XfemManager numberofenrichmentitems #in)
numberofgppertri #n)
debugvtk #(in)
vtkexport #n)
exportfields #n)
where numberofenrichmentitems represents number of enrichment items, numberofgppertri denotes the
number of Gauss points in each subtriangle of a cut element (default 12) and debugvtk controls if additional
debug vtk files should be written (1 activates the option, 0 is default).
The specification of an enrichment item may consist of several lines, see e.g. the test sm/zFemCrackVal-
Branch.in. First, the enrichment item type is specified together with some optional parameters according to
*EntType (num#)cn \
enrichmentfront #(n) \
propagationlaw #(n)
where enrichmentfront specifies an enrichment front (we may for example employ branch functions at a
crack tip and Heaviside enrichment along the rest of the crack, hence the “front” of the enrichment is treated
separately) and propagationlaw specifies a rule for crack propagation (this feature is still highly experimental
though). Specification of an enrichmentfront and a propagationlaw is optional.
The next line specifies the enrichment function to be used:
*EntType (num#)n
This is followed by a line specifying the geometric description (e.g. a polygon line or a circle) according to
*EntType (num#)cn extra attributes
where the number and type of extra attributes to specify will vary depending on the geometry chosen, e.g.
center and radius for a circle or a number of points for a polygon line.
If an enrichment front was specified previously, the type and properties of the enrichment front are specified
on the next line according to
*EntType (num#)en extra attributes
If a propagation law was specified previously, it’s type and properties are also specified on a separate line
according to
*EntType (num# ) extra attributes

—
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Chapter 5

Appendix

5.1 Sparse linear solver parameters

The sparselinsolverparams field has the following general syntax:

[1stype™ #m)]
[smtype #n)

solverParams™ 2 (stiminr)

where parameter 1stype allows to select solver for linear system of equations. Currently supported values are
0 (default) for direct solver (ST Direct), 1 for Iterative Method Library (IML) solver (ST_IML), 2 for Spooles
direct solver, 3 for Petsc library family of solvers, and 4 for DirectSparseSolver (ST_DSS). Parameter smtype
allows to select sparse matrix storage scheme. The scheme should be compatible with solver type. Currently
supported values (marked as “id”) are summarized in table (5.1). The 0 value is default and selects the
symmetric skyline (SMT_Skyline). Ther possible storage formats include unsymmetric skyline (SMT_SkylineU),
compressed column (SMT_CompCol), dynamically growing compressed column (SMT_DynCompCol), symmetric
compressed column (SMT_SymCompCol), spooles library storage format (SMT_SpoolesMtrx), PETSc library
matrix representation (SMT_PetscMtrx, a sparse serial/parallel matrix in AIJ format), and DSS compatible
matrix representations (SMT_DSS_*). The allowed 1stype and smtype combinations are summarized in the

table (5.1, together with solver parameters related to specific solver.

Storage format

id

Sparse solver, 1lstype

smtype

Direct (0)

IML (1)

Spooles (2)

Petsc (3)

DSS (4)

MKLPardiso (6)

Pardiso.org(8)

SuperLU_MT (7)

SMT _Skyline
SMT_SkylineU
SMT_CompCol
SMT_DynCompCol
SMT_SymCompCol
SMT_DynCompRow
SMT_SpoolesMtrx
SMT_PetscMtrx
SMT_DSS_sym_LDL
SMT_DSS_sym_LL
SMT_DSS_unsym_LU

© 00O Uik Wi~ O

—
o

+ o+t

+
+
+

Table 5.1: Solver and storage scheme compatibility.

The solver parameters in solverParams depend on the solver type and are summarized in table (5.2).

The stype allows to select particular iterative solver from IML library, currently supported values are 0
(default) for Conjugate-Gradient solver, 1 for GMRES solver. Parameter 1stol represents the maximum value

2User can set several run-time options, e.g., -ksp_type [cg, gmres, bicg, bcgs] -pc_type [jacobi, bjacobi,none,ilu,...] -ksp_monitor
-ksp-_rtol <rtol> -ksp_view -ksp_converged_reason. These options will override those that are default (PETSC KSPSetFromOptions()

routine is called after any other customization routines).
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Solver type id | Solver parameters/notes

ST _Direct

ST_IML 1 | [stype #am] 1stol #¢m lsiter #anlsprecond #n)
[precondattributes #(suing)]
Included in OOFEM, requires to compile with USE_IML

ST _Spooles 2 | [msglvl #am] [msgfile #w)]
http://www.netlib.org/linalg/spooles/spooles.2.2.html

ST _Petsc 3 | See Petsc manual, for detail

ST_DSS 4 | Sparse direct solver, included in OOFEM
Requires to compile with USE_DSS

ST_MKLPardiso 6 | Requires Intel MKL Pardiso

ST _SuperLU_MT 7 | SuperLU for shared memory machines
http://crd-legacy.lbl.gov/ xiaoye/SuperLU/

ST _PardisoProjectOrg | 8 | Requires Pardiso solver(http://www.pardiso-project.org/)

Table 5.2: Solver parameters.

of residual after the final iteration and the lsiter is maximum number of iteration for iterative solver. The
precondattributes parameters contains the optional preconditioner parameters. The lsprecond parameter
determines the type of preconditioner to be used. The possible values of 1sprecond together with supported
storage schemes and their descriptions are summarized in table (5.3)).

’ Precond type \ id \ Compatible storage \ Description and parameters

IML_VoidPrec | 0 | all No preconditioning
IML_DiagPrec | 1 | all Diagonal preconditioning
IML_ILUPrec | 2 | SMT_CompCol Incomplete LU Decomposition

SMT _DynCompCol | with no fill up

IML_ILUPrec | 3 | SMT_DynCompRow | Incomplete LU (ILUT) with
fillup.

The precondattributes are:
[droptol #em)| [partfill #am).
droptol dropping tolerance
partfill level of fill-up
IML_ICPrec 4 | SMT_SymCompCol | Incomplete Cholesky

SMT _CompCol with no fill up

Table 5.3: Preconditioning summary.

5.2 Eigen value solvers

The eigensolverparams field has the following general syntax:
[stype™ #an) \
[smtype #n) \
solverParams™ F# (string)
where parameter stype allows to select solver type. Parameter smtype allows to select sparse matrix storage
scheme. The scheme should be compatible with solver type. Currently supported values of stype are
summarized in table (.4l

5.3 Dynamic load balancing parameters

There are in general two basic factors causing load imbalance between individual subdomains: (i) one comming
from application nature, such as switching from linear to nonlinear response in certain regions or local adaptive
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Solver type stype id solver parameters
Subspace Iteration | 0 (default)
Inverse Iteration 1

SLEPc solver 2 requires “smtype 7"
see also SLEPc manual

Table 5.4: Eigen Solver parameters.

refinment, and (ii) external factors, caused by resourse realocation, typical for nondedicated cluster environ-
ments, where indivudual processors are shared by different applications and users, leading to time variation in
allocated processing power. The load balance recovery is achieved by repartitioning of the problem domain and
transferring the work (represented typically by finite elements) from one subdomain to another. This section
describes the structure and syntax of parameters related to dynamic load balancing. The corresponding part of
analysis record has the following general syntax:

1bflagM #n)]
forcelbil #(in)]
wtp #(ia)]

—

]
reluct #on)
abswct #ow)

[
[
[
[Lbstep #m)
[
[
[

minwct #qn)
where the parameters have following meaning:

1lbflag, when set to nonzero value activates the dynamic load balancing. Default value is zero.
forcelbl forces the load rebalancing after the first solution step, when set to nonzero value.

wtp allows to activate optional load balancing plugins. At present, the only supported value is 1, that
activates nonlocal plugin, necessary for nonlocal averaging to work properly when dynamic load balancing
is active.

lbstep rebalancing, if needed, is performed only every lbstep solution step. Default value is 1 (recover
balance after every step, if necessary).

relwcr sets relative wall-clock imbalance treshold. When achieved relative imbalance between wall clock
solution time of individual processors is greater than provided treshold, the rebalancing procedure will be
activated.

abswct sets absolute wall-clock imbalance treshold. When achieved absolute imbalance between wall
clock solution time of individual processors is greater than provided treshold, the rebalancing procedure
will be activated.

minwct minimum absolute imbalance to perform relative imbalance check using relwcr parameter,
otherwise only absolute check is done. Default value is 0.

At present, the load balancing support requires ParMETIS module to be configured and compiled.

5.4

Error estimators and indicators

The currently supported values of eetype are in table

EET_SEI - Represents scalar error indicator. It indicates element error based on the value of some suitable
scalar value (for example damage level, plastic strain level) obtained from the element integration points
and corresponding material model.

EET_ZZEE - The implementation of Zienkiewicz Zhu Error Estimator. It requires the special element
algorithms, which may not be available for all element types.
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Please note, that in the actual version, the error on the element level is evaluated using default integration
rule. For example, in case of ZZ error estimator, the error (L2 or energy norm) is evaluated from the
difference of computed and “recovered” stresses, which are approximated using the same interpolation
functions as displacements). Therefore, in many cases, the default integration rule order is not sufficient
and higher integration must be used on elements (consult element library manual and related NIP
parameter).

e EET_CZZSI - The implementation of combined criteria: Zienkiewicz Zhu Error Estimator for elastic
regime and scalar error indicator in non-linear regime.

Error estimator/indicator | eetype
EET_SEI 0
EET_ZZEE 1
EET_CZZSI 2

Table 5.5: Supported error estimators and indicators.

The sets of parameters (errorestimatorparams field) used to configure each error estimator are different

e EET _SEI
[regionskipmap # )
vartype #n)
minlim #qm) maxlim #n)
mindens # () maxdens #n) defdens #(n)
[remeshingdensityratio #m)

—

— regionskipmap parameter allows to skip some regions. The error is not evaluated in these regions
and default mesh density is used. The size of this array should be equal to number of regions and
nonzero entry indicates region to skip.

— vartype parameter determines the type of internal variable to be used as error indicator. Currently
supported value is 1, representing damage based indicator.

— If the indicator value is in range given by parameters (minlim, maxlim) then the proposed mesh
density is linearly interpolated within range given by parameters (mindens, maxdens). If indicator
value is less than value of minlim parameter then value of defdens parameter is used as required
density, if it is larger than maxlim then maxdens is used as required density.

— remeshingdensityratio parameter determines the allowed ratio between proposed density and
actual density. The remeshing is forced, whenever the actual ratio is smaller than this value. Default
value is equal to 0.80.

e EET_ZZEE
[regionskipmap # )
normtype Fn)
requirederror #am)
minelemsize #(m)

—

— regionskipmap parameter allows to skip some regions. The error is not evaluated in these regions
and default mesh density is used. The size of this array should be equal to number of regions and
nonzero entry indicates region to skip.

— normtype Allows select the type of norm used in evaluation of error. Default value is to use L2 norm
(equal to 0), value equal to 1 uses the energy norm.

— requirederror parameter determines the required error to obtain (in percents/100).

— minelemsize parameter allows to set minimum limit on element size.

e EET_CZZSI - combination of parameters for EET_SEI and EET_ZZEE; the in elastic regions are driven
using EET _SEI, the elastic are driven by EET_ZZEE.
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5.5 Material interfaces

The material interfaces are used to represent and track the position of various interfaces on fixed grids. Typical
examples include free surface, evolving interface between two materials, etc. Available representations include:

MI miflag | Compatibility
LEPIlic 0 2D triangular
LevelSet | 1 2D triangular

e LEPlic- representation based on Volume-Of-Fluid approach; the initial distribution of VOF fractions
should be specified for each element (see element manual)
[refvol #em)

— parameter refvol allows to set initial volume of reference fluid, then the reference volume is
computed in each step and printed, so the accuracy and mass conservation can be monitored.

e LevelSet- level set based representation
[Levelset #(a) OR refmatpolyx #ea) refmatpolyy #oa \
[Lsra #aw)] [rdt #ew)] [rerr #om)

— levelset allows to specify the initial level set values for all nodes directly. The size should be equal
to total number of nodes within the domain.

— Parameters refmatpolyx and refmatpolyy allow to initialize level set by specifying interface
geometry as 2d polygon. Then polygon describes the initial zero level set, and level set values
are then defined as signed distance from this polygon. Positive values are on the left side when
walking along polygon. The parameter refmatpolyx specifies the x-coordinates of polygon vertices,
parameter refmatpolyy y-corrdinates. Please note, that level set must be initialized, either using
levelset parameter or using refmatpolyx and refmatpolyy.

— Parameter 1sra allows to select level set reinitialization algorithm. Currently supported values are 0
(no re-initialization), 1 (re-initializes the level set representation by solving d, = S(¢)(1 —|Vd|) to
steady state, default), 2 (uses fast marching method to build signed distance level set representation).

— Parameters rdt rerr are used to control reinitialization algorithm for 1sra = 0. rdt allows to
change time step of integration algorithm and parameter rerr allows to change default error limit
used to detect steady state.

5.6 Mesh generator interfaces

The mesh generator interface is responsible to provide a link to specific mesh generator. The supported values
of meshpackage parameter are

e MPT_T3D: meshpackage = 0. T3d mesh interface. Default. Supports both 1d, 2d (triangles) and 3d
(tetrahedras) meshes. Reliable.

e MPT_TARGE2: meshpackage = 1. Interface to Targe2 2D mesh generator.

e MPT_SUBDIVISION: meshpackage=3. Built-in subdivision algorithm. Supports triangular 2D and
tetrahedral 3D meshes. Can operate in parallel mode.

5.7 Initialization modules

Initialization modules allow to initialize the state variables using data previously computed by external software.
The number of initialization module records is specified in analysis record using ninitmodules parameter (see
the initial part of section [3). The general format is the following:
*EntType initfile #(string
The file name following the keyword “initfile” specifies the path to the file that contains the initialization data
and should be given without quotes.
Currently, the only supported initialization module is
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e Gauss point initialization module

GPInitModule initfile #(string)

— Each Gauss point is represented by one line in the initialization file.

— The Gauss points should be given in a specific order, based on the element number and the Gauss
point number, in agreement with the mesh specified in later sections.

— Each line referring to a Gauss point should contain the following data:

elnum #¢n) gpnum #n) coords #ua) NE F(in)
var_1_id #an) values_1 #(a)

var ng_id #@n) values ng #aa)
— elnum is the element number
— gpnun is the Gauss point number
— coords are the coordinates of the Gauss point
— ng is the number of groups of variables that will follow

— var_1_id is the identification number of variable group number 1 (according to the definitions in
internalstatetype.h)

— values_1 are the values of variables in group number 1
— var_ng_id is the identification number of variable group number ng
— values_ng are the values of variables in group number ng

— Example:
“37430.020.04 0.0535210.236210.049160-2.08e+07 00 0 0” means that Gauss point num-
ber 4 of element number 37 has coordinates x = 0.02, y = 0.04 and z = 0.05 and the initial values
are specified for 3 groups of variables;
the first group (variable ID 52) is of type IST_DamageScalar (see internalstatetype.h) and contains 1
variable (since it is a scalar) with value 0.23;
the second group (ID 62) is of type IST_CumPlasticStrain and contains 1 variable with value 0.049;
the third group is of type IST_StressTensor and contains 6 variables (stress components o, oy, etc.)
with values 0, -2.08e+07, 0, 0, 0, 0

5.8 Export modules

Export modules allow to export computed data into external software for post-processing. The number of
export module records is specified in analysis record using nmodules parameter (see the initial part of section
3). The general format is the following:
*EntType [tstep_all]

[tstep-step F#am)|

[tsteps_out #)]
[
[

subtsteps_out #n)]
domain_all]
[domain mask #n)]
To select all solution steps, in which output will be performed, use tstep_all. To select each tstep_step-nth
step, use tstep_step parameter. In order to select only specific solution steps, the tsteps_out list can be
specified, supplying solution step number list in which output will be done. To select output for all domain
of the problem the domain_all keyword can be used. To select only specific domains, domain mask array
can be used, where the values of the array specify the domain numbers to be exported. If the parameter
subtsteps_out = 1, it turns on the export of intermediate results, for example during the substepping or
individual equilibrium iterations. This option requires support from the solver.
Currently, the supported export modules are following

—

e VTK export, DEPRECATED - Use VITKXML
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vtk [vars #a)
primvars # i)

[
[
[cellvars #w)
[
[

—

stype #(m)]
regionstoskip #)]

vtkxml [vars #a)
[primvars #a)
[cellvars #a)
[ipvars #a)]
[stype #n)]
[regionsets # ()]
[timeScale #(m)]

—

— The vtk module is obsolete, use vtkxml instead. Vtkxml allows to export results recovered on region
by region basis and has more features.

— The array vars contains identifiers for those internal variables which are to be exported. These
variables will be smoothed and transfered to nodes. The id values are defined by InternalStateType
enumeration, which is defined in include file “src/oofemlib/internalstatetype.h”.

— The array primvars contains identifiers of primary variables to be exported. The possible values corre-
spond to the values of enumerated type UnknownType, which is again defined in “src/oofemlib/unknown-
type.h”. Please note, that the values corresponding to enumerated type values start from zero, if not
specified directly and that not all values are supported by particular material model or analysis type.

— The array cellvars contains identifiers of constant variables defined on an element (cell), e.g. a
material number. Identifier numbers are specified in “src/oofemlib/internalstatetype.h”.

— The array ipvars contains identifiers for those internal variables which are to be exported. These
variables will be directly exported (no smoothing) as point dataset, where each point corresponds to
individual integration point. A separate vtu file for these raw, point data will be created. The id values
are defined by InternalStateType enumeration, which is defined in include file “src/oofemlib/internal-
statetype.h”.

— The parameter stype allows to select smoothing procedure for internal variables, which is used to
compute nodal values from values in integration points. The supported values are 0 for simple nodal
averageing (generally supported only by triangular and tetrahedral elements), 1 for Zienkiewicz Zhu
recovery (default), and 2 for Superconvergent Patch Recovery (SPR, based on least square fitting).

— The export is done on region basis, on each region, the nodal recovery is performed independently
and results are exported in a separate piece. This allows to take into account for discntinuities, or to
export variables defined only by particular material model. The region volumes are defined using
sets containing individual elements. By default the one region is created, containing all element in
the problem domain. The optional parameter regionsets allows to use user-defined. The individual
values refer to numbers (ids) of domain sets. Note, that regions are determined solely using elements.

vtkxml tstep-all cellvars 1 46 vars 1 1 primvars 1 1 stype 2 regionsets 2 1 2

— timeScale scales time in output. In transport problem, basic units are seconds. Setting timeScale
= 2.7T77777e-4 (=1/3600.) converts all time data in vtkXML from seconds to hours.

By default vtk and vtkxml modules perform recovery over the whole domain. The VIKXML module
can operate in region-by-region mode (see nvr and vrmap parameters). In this case, the smoothing is
performed only over particular virtual region, where only elements in this virtual region participate.

Homogenization of IP quantities in the global coordinate system (such as stress, strain, damage, heat
flow). Corresponding IP quantities are summed and averaged over the volume. It is possible to select
region sets from which the averaging occurs. The averaging works for all domains with an extension to
trusses. A truss is considered as a volume element with oriented stress and strain components along the
truss axis. The transformation to global components occurs before averaging.

ists #a)
[scale #(m)]
[regionSets #uw)

—
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— An integer array ists specifies internal state types for export which are defined in internalstatetype.h
file.

— The parameter scale multiplies all averaged IP quantities. scale=1 by default.
— An integer array regionSets specifies region sets for averaging. All domain is averaged by default.
e Gauss point export is useful if one needs to plot a certain variable (such as damage) as a function of
a spatial coordinate using tools like gnuplot. It generates files with data organized in columns, each

row representing one Gauss point. In this way, one can plot e.g. the damage distribution along a
one-dimensional bar.

gpexportmodule  [vars #a) \
[ncoords #n)

— The array vars contains identifiers for those internal variables which are to be exported. The id values
are defined by InternalStateType enumeration, which is defined in include file “src/oofemlib/internal-
statetype.h”.

— Parameter ncoords specifies the number of spatial coordinates to be exported at each Gauss point.
Depending on the spatial dimension of the domain, the points can have one, two or three coordinates.
If ncoords is set to -1, only those coordinates that are actually used are exported. If ncoords is set
to 0, no coordinates are exported. If ncoords is set to a positive integer, exactly ncoords coordinates
are exported. If ncoords exceeds the actual number of coordinates, the actual coordinates are
supplemented by zeros. For instance, if we deal with a 2D problem, the actual number of coordinates
is 2. For ncoords=3, the two actual coordinates followed by 0 will be exported. For ncoords=1,
only the first coordinate will be exported.

The Gauss point export module creates a file with extension “gp” after each step for which the output is
performed. This file contains a header with lines starting by the symbol #, followed by the actual data
section. Each data line corresponds to one Gauss point and contains the following data:

. element number,
. material number,

. Gauss point number,

1

2

3

4. contributing volume around Gauss point,

5. Gauss point global coordinates (written as a real array of length ncoords),
6

. internal variables according to the specification in vars (each written as a real array of the corre-
sponding length).

Example:

“GPExportModule 1 tstep_step 100 domain_all ncoords 2 vars 5 4 13 31 64 65”

means that the *.gp file will be written after each 100 steps and will contain for each of the Gauss points
in the entire domain its 2 coordinates and also internal variables of type 4, 13, 31, 64 and 65, which are
the strain tensor, damage tensor, maximum equivalent strain level, stress work density and dissipated
work density. Of course, the material model must be able to deliver such variables. The size of the
strain tensor depends on the spatial dimension, and the size of the damage tensor depends on the spatial
dimension and type of model (e.g., for a simple isotropic damage model it will have just 1 component
while for an anisotropic damage model it may have more). The other variables in this example are scalars,
but they will be written as arrays of length 1, so the actual value will always be preceded by “1” as the
length of the array. Since certain internal variables have the meaning of densities (per unit volume or
area, again depending on the spatial dimension), it is useful to have access to the contributing volume of
the Gauss point. The product of this contributing volume and the density gives an additive contribution
to the total value of the corresponding variable. This can be exploited e.g. to evaluate the total dissipated
energy over the entire domain.
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Chapter 6

Examples

6.1 Beam structure

This example for a simple beam structure gives basic overview of the input file (found under tests/s-
m/beam2d_l.in). Structure geometry and its constitutive and geometrical properties are shown in Fig.
(6.1). The linear static analysis is required, the influence of shear is neglected.
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Figure 6.1: Example 1 - beam2d_1.in

beam2d_1.out

Simple Beam Structure - linear analysis

#only momentum influence to the displacements is taken into account
#beamShearCoeff is artificially enlarged.

StaticStructural nsteps 3 nmodules 0O

domain 2dBeam

OutputManager tstep_all dofman_all element_all

ndofman 6 nelem 5 ncrosssect 1 nmmat 1 nbc 6 nic O nltf 3 nset 7

node 1 coords 3 0. 0. O.
node 2 coords 3 2.4 0. O.
node 3 coords 3 3.8 0. O.
node 4 coords 3 5.8 0. 1.5
node 5 coords 3 7.8 0. 3.0
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node 6
Beam2d
Beam2d
Beam2d
Beam2d

coords 3 2.4 0.

1
2
3
4

nodes
nodes
nodes
nodes

3.0

ofsToCondense 1 6

D
DofsToCondense 1 3

212
223
234
245
26 2

Beam2d 5 nodes DofsToCondense 1 6

SimpleCS 1 area 1.e8 Iy 0.0039366 beamShearCoeff 1.e18 thick 0.54 material 1 set 1

IsoLE 1 d 1. E 30.e6 n 0.2 tAlpha 1.2e-5

BoundaryCondition 1 loadTimeFunction 1 dofs 1 3 values 1 0.0 set 4
BoundaryCondition 2 loadTimeFunction 1 dofs 1 5 values 1 0.0 set 5
BoundaryCondition 3 loadTimeFunction 2 dofs 3 1 3 5 values 3 0.0 0.0 -0.006e-3 set 6
ConstantEdgeload 4 loadTimeFunction 1 Components 3 0.0 10.0 0.0 loadType 3 set 3
NodalLoad 5 loadTimeFunction 1 dofs 3 1 3 5 Components 3 -18.0 24.0 0.0 set 2
StructTemperatureload 6 loadTimeFunction 3 Components 2 30.0 -20.0 set 7

PeakFunction 1 t 1.0 f£(t) 1.
PeakFunction 2 t 2.0 f(t) 1.
PeakFunction 3 t 3.0 f(t) 1.
Set 1 elementranges {(1 5)}

Set 2 nodes 1 4

Set 3 elementedges 2 1 1
Set 4 nodes 2 1 5

Set 5 nodes 1 3

Set 6 nodes 1 6

Set 7 elements 2 1 2

6.2 Plane stress example
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Figure 6.2: Example 2

Patch test of PlaneStress2d elements -> pure compression

LinearStatic nsteps 1
domain 2dPlaneStress

OutputManager tstep_all dofman_

ndofman 8 nelem 5 ncrosssect 1

all element_all
nmat 1 nbc 3 nic 0 nltf 1 nset 3

node
node
node
node
node
node
node
node

1
2
3
4
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7
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coords
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PlaneStress2d 1 nodes 4 1 4 3 2 NIP 1
PlaneStress2d 2 nodes 4 1 7 5 4 NIP 1
PlaneStress2d 3 nodes 4 4 5 6 3 NIP 1
PlaneStress2d 4 nodes 4 3 6 8 2 NIP 1
PlaneStress2d 5 nodes 4 57 8 6 NIP 1
Set 1 elementranges {(1 5)}

Set 2 nodes 2 1 2

Set 3 nodes 2 7 8

SimpleCS 1 thick 1.0 width 1.0 material 1 set 1

IsoLE 1 d 0. E 15.0 n 0.25 talpha 1.0

BoundaryCondition 1 loadTimeFunction 1 dofs 2 1 2 values 1 0.0 set 2
BoundaryCondition 2 loadTimeFunction 1 dofs 1 2 values 1 0.0 set 3
NodalLoad 3 loadTimeFunction 1 dofs 2 1 2 components 2 2.5 0.0 set 3
ConstantFunction 1 £(t) 1.0

6.3 Examples - parallel mode

6.3.1 Node-cut example

The example shows explicit direct integration analysis of simple structure with two DOFs. The geometry and
partitioning is sketched in fig.

F=1 F=1

@ OQ Y Shared node @ }

2l ]2 2|

A efl o
1]

W W

(a) (b) (c)

Figure 6.3: Node-cut partitioning example: (a) whole geometry, (b) partition 0, (¢) partition 1.

#

# partition O

#

partest.out.O

Parallel test of explicit oofem computation

#

N1DEIDynamic nsteps 3 dumpcoef 0.0 deltaT 1.0
domain 2dTruss

#

OutputManager tstep_all dofman_all element_all
ndofman 2 nelem 1 ncrosssect 1 nmat 1 nbc 3 nic O nltf 1 nset 4
#

Node 1 coords 3 0. 0. O.

47



Node 2 coords 3 0. 0. 2. Shared partitions 1 1

Truss2d 1 nodes 2 1 2

Set 1 elements 1 1

Set 2 nodes 2 1 2

Set 3 nodes 1 1

Set 4 nodes 0

SimpleCS 1 thick 0.1 width 10.0 material 1 set 1

IsoLE 1 tAlpha 0.000012 4 10.0 E 1.0 n 0.2

BoundaryCondition 1 loadTimeFunction 1 dofs 1 1 values 1 0.0 set 2
BoundaryCondition 2 loadTimeFunction 1 dofs 1 3 values 1 0.0 set 3
NodalLoad 3 loadTimeFunction 1 dofs 2 1 3 components 2 0. 1.0 set 4
ConstantFunction 1 £(t) 1.0

#

# partition 1

#

partest.out.1

Parallel test of explicit oofem computation

#

N1DEIDynamic nsteps 3 dumpcoef 0.0 deltaT 1.0

domain 2dTruss

#

OutputManager tstep_all dofman_all element_all

ndofman 2 nelem 1 ncrosssect 1 nmat 1 nbc 3 nic O nltf 1 nset 4
#

Node 2 coords 3 O.
Node 3 coords 3 O.
Truss2d 2 nodes 2
Set 1 elements 1 2
Set 2 nodes 2 2 3
Set 3 nodes 0

Set 4 nodes 1 3
SimpleCS 1 thick 0.1 width 10.0 material 1 set 1

IsoLE 1 tAlpha 0.000012 d 10.0 E 1.0 n 0.2

BoundaryCondition 1 loadTimeFunction 1 dofs 1 1 values 1 0.0 set 2
BoundaryCondition 2 loadTimeFunction 1 dofs 1 3 values 1 0.0 set 3
NodalLoad 3 loadTimeFunction 1 dofs 2 1 3 components 2 0. 1.0 set 4
ConstantFunction 1 f(t) 1.0

0. 2. Shared partitions 1 O
0. 4.
23

6.3.2 Element-cut example

The example shows explicit direct integration analysis of simple structure with two DOFs. The geometry and
partitioning is sketched in fig.

#

# partition O

#

partest2.out.0

Parallel test of explicit oofem computation

#

N1DEIDynamic nsteps 5 dumpcoef 0.0 deltaT 1.0
domain 2dTruss

#

OutputManager tstep_all dofman_all element_all
ndofman 3 nelem 2 ncrosssect 1 nmat 1 nbc 3 nic O nltf 1 nset 4
#

Node 1 coords 3 0. 0. O.
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F=1 F=1

(@) (b) (c)
Legend:

@® Remote node (with local DOFs)
— Shared element

Figure 6.4: Element-cut partitioning example: (a) whole geometry, (b) partition 0, (¢) partition 1.

Node 2 coords 3
Node 3 coords 3
Truss2d 1 nodes 12

Truss2d 2 nodes 2 2 3

Set 1 elements 2 1 2

Set 2 nodes 31 2 3

Set 3 nodes 1 1

Set 4 nodes 1 3

SimpleCS 1 thick 0.1 width 10.0 material 1 set 1

IsoLE 1 tAlpha 0.000012 d 10.0 E 1.0 n 0.2

BoundaryCondition 1 loadTimeFunction 1 dofs 1 1 values 1 0.0 set 2

BoundaryCondition 2 loadTimeFunction 1 dofs 1 3 values 1 0.0 set 3

NodalLoad 3 loadTimeFunction 1 dofs 2 1 3 components 2 0. 1.0 set 4
ConstantFunction 1 £(t) 1.0

0. 2.

0. 0. 4. Remote partitions 1 1
2

2

#

# partition 1
#
partest2.out.1
Parallel test of explicit oofem computation

#

N1DEIDynamic nsteps 5 dumpcoef 0.0 deltaT 1.0

domain 2dTruss

#

OutputManager tstep_all dofman_all element_all

ndofman 2 nelem 1 ncrosssect 1 nmat 1 nbc 3 nic O nltf 1 nset 4
#

Node 2 coords 3

0. 0. 2 Remote partitions 1 O
Node 3 coords 3 0. 0. 4
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Truss2d 2 nodes 2 2 3

Set 1 elements 1 2

Set 2 nodes 2 2 3

Set 3 nodes 0

Set 4 nodes 1 3

SimpleCS 1 thick 0.1 width 10.0 material 1 set 1

IsoLE 1 tAlpha 0.000012 d 10.0 E 1.0 n 0.2

BoundaryCondition 1 loadTimeFunction 1 dofs 1 1 values 1 0.0 set 2
BoundaryCondition 2 loadTimeFunction 1 dofs 1 3 values 1 0.0 set 3
NodalLoad 3 loadTimeFunction 1 dofs 2 1 3 components 2 0. 1.0 set 4
ConstantFunction 1 £(t) 1.0

6.4 Figures

O partition local (private) node

B shared node

Figure 6.5: Node-cut partitioning.
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O partition local (private) node
m shared node (with local DOFs on each partition)

Figure 6.6: Node-cut partitioning - local constitutive mode.

O local partition node
B shared node (with local DOFs on each partition)
@® null node (no DOFs necessary)

. remote element (does not contribute to problem, provides only mirrored IP
values for nonlocal averaging)

Figure 6.7: Node-cut partitioning - nonlocal constitutive mode.
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O partition local (private) node

® remote node (with local DOFs on each partition)

A shared elements are duplicated on neighbour partitions

Figure 6.9: Element-cut partitioning, local constitutive mode.
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