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Bořek Patzák

Czech Technical University
Faculty of Civil Engineering

Department of Structural Mechanics
Thákurova 7, 166 29 Prague, Czech Republic

December 30, 2017

1

http://www.oofem.org
http://mech.fsv.cvut.cz/~bp/bp.html


2

LEGAL NOTICE

Copyright (C) 2000 Bořek Patzák

This notice must be preserved on all partial or complete copies of this manual. All modifications to
this manual, translations or derivative work based on this manual must be first approved in writing
by the author. If part of this manual is distributed, a notice how to obtain the full version must be

included.

The OOFEM is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

The author is not liable for any damages, direct or indirect,
resulting from the use of the information provided in this work.
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1 Introduction

The aim of OOFEM project is to develop efficient and robust tool for FEM computations as well as to provide modular
and extensible environment for future development.
The aim of this document is to provide the introduction to the OOFEM principles and internal structure. However, it
is not intended to contain the detailed description of the whole package. Interested readers should follow the OOFEM
library reference manual1 for more detailed reference. This hypertext reference manual is generated automatically
from the source code and it represents always up to date source of information. It contains a class hierarchy browser,
an alphabetical list of all components and a detailed hypertext description of all library components, including all
classes and their attributes and services.
The OOFEM comes divided into two basic parts - a library and a distribution. The library (called OOFEMlib) is the
core part of the OOFEM, containing the basic collection of classes. These classes are problem independent and they
provide the common definitions and support to all FEM problems. The distribution part contains the rest - modules
representing the problem dependent parts.
The OOFEM package is written in C++ (see, for example [11], for reference). This document contains many examples
and listings of a parts of the source code. Therefore, the ideal reader should be familiar with C++ programming
language. However, any reader with an object-oriented background should follow this document, since the examples
are written in a form, which is easy to read and understand.

2 General Structure

General structure is shown in Fig. 1. The key class is EngineeringModel representing the problem under con-
sideration. It can contain one or more domains (abstractions for computational mesh) represented by the Domain
class. Generally speaking, it contains the domain description, or if the program runs in parallel, then it contains
the description of the domain associated with a particular processor or thread of execution. Domain contains and
manages lists of degree of freedom managers, elements, boundary conditions, cross sections, and material models -
these describe the geometry of the problem, its constitutive properties, and applied boundary conditions. Services
for accessing each of these objects are provided. Domain class & object provides services for reading input files and
instantiating corresponding components accordingly.
Engng model and Numerical method interfaces, shown schematically in top-left frame, will be explained in Section 3.
The classes & objects in the left-bottom frame represent the element, material model, and cross section abstractions.
Because of their principal importance, a special section 4 will be devoted to a detailed explanation of this frame.
DOF is an abstraction for a single degree of freedom (DOF). It maintains its physical meaning and associated
equation number. DOF is the attribute of DofManager. The DofManager manages the collection of DOFs. A
typical derived class is class Node, representing a node in a finite element mesh. Boundary condition and Initial
condition are abstractions of boundary and initial conditions. They are attributes of Domain and are associated
with one or more DOFs. The abstract class Load, derived from base Boundary condition class, is an abstraction
for load. It is an attribute of Domain and can be associated with several dof managers or elements, according to
the type of loading it represents. The class declares the basic services provided by all derived classes. Derived classes
declare specific load type dependent services and implement all necessary services.

3 Engineering model — Numerical Method Frame

3.1 Problem representation - Engineering model

Engng model is an abstraction for the problem under consideration. It represents the type of analysis to be performed.
Base class declares and implements the basic general services for assembling characteristic components and services

1http://ksm.fsv.cvut.cz/oofem/oofem.html

http://www.oofem.org
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Figure 1: General Structure.

for starting the solution step and its termination. Derived classes “know” the form of governing equation and the
physical meaning of particular components. They are responsible for forming the governing equation for each solution
step, usually by summing contributions from particular elements and nodes.
The solution step may represent either a time step, a load increment, or a load case. The solution steps are grouped
together into so called meta steps. The meta step can be thought as a sequence of solution steps, with the same set of
attributes used to drive the behavior of engng model. For each meta step, the engng model typically updates certain
attribute values according to meta step model attributes (see updateAttributes service) and creates the solution steps
accordingly. This allows to switch to a different time increment, a different solution control, etc. If no meta step is
specified, the engng model creates a default one for all required solution steps. There are two services, where engng
model attributes are set or updated. The first one, used for those attributes which do not vary during the solution of
the problem, are initialized in instanciateYourself service. The second service is updateAttributes, where the attributes
(with meta step validity) are updated according to a values valid for the given meta step. If no meta step is introduced,
a default one is created (with the attributes set to the engng model attributes). Then there is no difference, whether
the attributes are initialized in instanciateYourself or in updateAttributes, but the preferred scheme is to read all
attributes in instanciateYourself and to left updateAttributes service empty.
The basic EngngModel tasks are following:

• Assembling governing equations by summing contributions (typically from nodes and elements).

• Solving the problem described by governing equation(s) using the instance of a suitable numerical method. This
requires to establish a mapping between numerical method-parameters and EngngModel components of governing
equation. EngngModel must map each component of governing equation(s) (which has physical meaning) to the
corresponding numerical component. This mapping between physical components to independent numerical
components (understood by the numerical method) is important, because it allows the numerical method to be
used by many EngngModels with different component meaning and allows to use different numerial methods by
EngngModel. This is achieved by using the compulsory numerical component names (see further).

• Providing access to the problem solution. Services for returning unknown values according to their type and
mode are provided. These services are used by DOFs to access their corresponding unknowns.
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• Terminating the time step by updating the state of the problem domains (nodes and elements, including inte-
gration points).

• Managing the problem domains, meta steps, and problem input/output streams.

• Equation numbering.

• Storing and restoring problem state to/from context file.

• Updating the DOF unknown dictionaries if EngngModel supports changes of static system (see the Dof class
documentation for detailed explanation). In general, if the static system changes are not supported, then when
the DOFs are asked for unknowns, they use their equation numbers to ask EngngModel for corresponding
unknowns. The unknown values are therefore stored in the EngngModel and are requested by the DOFs. On the
other hand, when the changes of the static system are supported, the equation numbers of DOFs can vary during
the solution. Therefore, so called DOF unknown dictionaries are introduced. All unknowns are stored on the
DOF level and the DOFs will use in such case their own dictionaries instead of requesting the EngngModel. The
EngngModel is then fully responsible for updating this dictionaries for each DOF with all necessary unknowns
(see updateDofUnknownsDictionary function).

The complete listing of EngngModel class declaration folows.

/* $Header: /home/cvs/bp/oofem/doc/usrman/usrman.tex,v 1.7 2003/04/23 14:19:27 bp Exp $ */

// ************************

// *** CLASS ENGNGMODEL ***

// ************************

class EngngModel

{

protected:

/// number of receiver domains

int ndomains;

/// List of problem domains

AList<Domain>* domainList;

/// Total number of time steps

int numberOfSteps;

/// total number of equation in cuurent time step

int numberOfEquations;

/// total number or prescribed equations in current time step

int numberOfPrescribedEquations;

/// number of equations per domain

IntArray domainNeqs;

/// number of prescribed equations per domain

IntArray domainPrescribedNeqs;

/// renumbering flag

int renumberFlag;

/// equation numbering completed flag

int equationNumberingCompleted;

/// number of meta steps

int nMetaSteps;

/// List of problem metasteps

AList<MetaStep>* metaStepList;

/// Solution step when IC (initial conditions) apply

TimeStep* stepWhenIcApply;
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/// Currnet time step

TimeStep* currentStep ;

/// Previous time step

TimeStep* previousStep;

/// receivers id

int number ;

/// Path to input stream

//char* dataInputFileName ;

/// Path to output stream

char* dataOutputFileName ;

/// Output stream

FILE* outputStream;

/// Input stream

//FILE* inputStream;

/// Domain context output mode

ContextOutputMode contextOutputMode;

int contextOutputStep;

///Export module manager

ExportModuleManager* exportModuleManager;

/// Domain mode

problemMode pMode ;

/// solution start time

time_t startTime;

// initial value of processor time used by program

// clock_t startClock;

/// master e-model; if defined receiver is in maintained (slave) mode

EngngModel* master;

/// context

EngngModelContext* context;

/**

flag indicating that the receiver runs in parallel.

*/

int parallelFlag;

public:

/**

Constructor. Creates Engng model with number i belonging to domain d.

*/

EngngModel (int i, EngngModel* _master = NULL) ; // constructor

/**

Constructor. Creates Engng model with number i and input file given by path.

*/

EngngModel (int i, char* s, EngngModel* _master = NULL);

/// Destructor.

virtual ~EngngModel () ; // destructor

/**

Service for accessing particular problem domain.
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Generates error if no such domain is defined.

@param: n pointer to n-th domain is returned

*/

Domain* giveDomain (int n);

/// Returns number of domains in problem.

int giveNumberOfDomains () {return ndomains;}

/** Service for accessing ErrorEstimator corresponding to particular domain */

virtual ErrorEstimator* giveDomainErrorEstimator (int n) {return NULL;}

// input / output

/// Returns input file path.

//char* giveInputDataFileName () ;

/// Returns file descriptor of output file

FILE* giveOutputStream () ;

/** Returns base output file name

to which extensions, like .out .vtk .osf should be added.

In current implementation, output file name is simply returned.

@param path and base file name will be copied into the array pointed to by dest

@param not more than n bytes of src are copied

*/

char * giveOutputBaseFileName(char *dest, size_t n)

{return strncpy (dest, dataOutputFileName, n);}

//FILE* giveInputStream () ;

/*

Returns current time in seconds as returned by time call.

@return current time in time_t structure.

*/

//time_t getTime ();

/*

Returns an approximation of processor time used by the program.

The value returned is the CPU time used so far as a

clock_t; to get the number of seconds used, divide by

CLOCKS_PER_SEC. Calls clock ANSI C function.

The C standard allows for arbitrary values at the start of

the program; take the difference between the value

returned from a call to this method at the start of the pro-

gram and the end to get maximum portability.

*/

//clock_t getClock ();

/**

Returns domain context output mode.

*/

ContextOutputMode giveContextOutputMode () {return contextOutputMode;}

/**

Returns domain context output step.

*/

int giveContextOutputStep () {return contextOutputStep;}

/**

Sets context output mode of receiver.

@param contextMode domain context mode.

*/

void setContextOutputMode (ContextOutputMode contextMode)

{contextOutputMode=contextMode;}
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/**

Sets user defined context output mode (it sets contextOutputMode to contextOutputMode),

setting contextOutputStep to given value.

@param cStep new context output step

*/

void setUDContextOutputMode (int cStep)

{contextOutputMode=USERDEFINED; contextOutputStep = cStep;}

/**

Sets domain mode to given mode.

@param mode domain mode.

*/

void setProblemMode (problemMode mode) {pMode = mode;}

/// Returns domain mode.

problemMode giveProblemMode () {return pMode;}

/// Sets the renumber flag to TRUE

virtual void setRenumberFlag() {this->renumberFlag = 1;}

/// Sets the renumber flag to FALSE

virtual void resetRenumberFlag() {this->renumberFlag = 0;}

/**

Performs analysis termination after finishing analysis.

*/

void terminateAnalysis () ;

// solving

/** Starts solution process. Implementation should invoke for each

time step solveYourselfAt function with time step as parameter. Time

steps are created using giveNextStep function (this will set current

time step to newly created, and updates previous step).

*/

virtual void solveYourself ();

/** Solves problem for given time step. Should assemble

characteristic matrices and vectors if necessary and solve problem

using appropriate numerical method. After finishing solution,

this->updateYourself function for updating solution state and then

this->terminate function (for updating nodal and element values)

should be called.

*/

virtual void solveYourselfAt (TimeStep*) {}

//virtual int requiresNewLhs () {return 1;}

/** Terminates the solution of time step. Default implementation

calls prinOutput() service and if specified, context of whole domain

is stored and output for given time step is printed.

*/

virtual void terminate (TimeStep*);

/** Prints the ouput of the solution step (using virtual

this->printOutputAtservice) to the stream detemined using

this->giveOutputStream() method and calls exportModuleManager to do

output. */

virtual void doStepOutput(TimeStep*);
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/** Saves context of given solution step, if required (determined

using this->giveContextOutputMode() method).

*/

void saveStepContext(TimeStep*);

/** Updates internal state after finishing time step. (for example

total values may be updated according to previously solved

increments). Then element values are also updated (together with

related integration points and material statuses). */

virtual void updateYourself (TimeStep* stepN);

/** Provides the oportunity to initialize state variables stored in

element integration points acording to initial conditions using

function initializeYourself() on element level. Should be called

when curent time step is time step when IC will aply (see

EngngModel::giveNumberOfTimeStepWhenIcApply) somewhere from

solveYourselfAt function). Implementation must be provided. Default

implementation is empty. */

virtual void initializeYourself (TimeStep*) {}

/** Initializes the newly generated discretization state acording to

previous solution. This process should typically include restoring

old solution, instanciating newly generated domain(s) and by mapping

procedure. */

virtual int initializeAdaptive (int stepNumber) {return 0;}

/** Returns total number of equations in active (current time steep)

time step. The UnknownType parameter allows to distinguis between

several possible governing equations, that can be numbered

separately. */

virtual int giveNumberOfEquations (EquationID);

/** Returns total number of prescribed equations in active (current

time steep) time step. The UnknownType parameter allows to

distinguis between several possible governing equations, that can be

numbered separately. */

virtual int giveNumberOfPrescribedEquations (EquationID);

/** Returns number of equations for given domain in active (current

time steep) time step. The UnknownType parameter allows to

distinguis between several possible governing equations, that can be

numbered separately. */

virtual int giveNumberOfDomainEquations (int, EquationID);

/** Returns number of prescribed equations for given domain in active

(current time steep) time step. The UnknownType parameter allows to

distinguis between several possible governing equations, that can be

numbered separately. */

virtual int giveNumberOfPrescribedDomainEquations (int, EquationID);

//virtual IntArray* GiveBanWidthVector ();

// management components
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/** Provides backward mapping between numerical component and

characteristic component on EngngModel level. */

virtual CharType giveTypeOfComponent (NumericalCmpn) {return UnknownCharType;}

/** Returns requested unknown. Unknown at give time step is

characterized by its type and mode and by its equation number. This

function is used by Dofs, when they are requsted for their associated

unknowns. @see Dof::giveUnknown method */

virtual double giveUnknownComponent (EquationID, ValueModeType, TimeStep*, Domain*, Dof*)

{return 0.0;}

virtual double giveUnknownComponent (UnknownType, ValueModeType, TimeStep*, Domain*, Dof*)

{return 0.0;}

/** Initializes whole problem acording to its description stored in

inputStream. Prints header, opens the outFileName, instanciate

itself the receicer using using virtual initializeFrom service and

instancites all problem domains. */

virtual int instanciateYourself (DataReader* dr, InputRecord* ir,

char* outFileName, char* desc) ;

/** Initializes receiver acording to object description in input

reader. InitString can be imagined as data record in component

database belonging to receiver. Receiver may use value-name

extracting functions to extract particular field from record.*/

virtual IRResultType initializeFrom (InputRecord* ir);

/// Instanciate problem domains by calling their instanciateYourself() service

int instanciateDomains (DataReader* dr);

/// Instanciate problem meta steps by calling their instanciateYourself() service

int instanciateMetaSteps (DataReader *dr);

/// Instanciate default metastep, if nmsteps is zero

int instanciateDefaultMetaStep (InputRecord* ir);

/** Update receiver attributes according to step metaStep

attributes. Allows the certain parameters or attributes to be

updated for particular metastep. The metastep provides the

attributes record, from which the corresponding attributes can be

read. The service takes TimeStep as parameter, from which

corresponding MetaStep is requested. It is recomended, to implement

this service in such way, that multiple calls for steps belonging to

same MetaStep does not change response. The default implementation

updates the numerical method attributes. @param TimeStep time step.

*/

virtual void updateAttributes (TimeStep*);

/** Update e-model attributes attributes according to step metaStep

attributes. Calls updateAttributes. At the end the meta step input

reader finish() service is called in order to allow for unread

attribute check. */

void initMetaStepAttributes (TimeStep* tStep);

/** Stores the state of model to output stream. Stores not only the

receiver state, but also same function is invoked for all DofManagers

and Elements in associated domain. Note that by storing element

context also contexts of all associated integration points (and



3 ENGINEERING MODEL — NUMERICAL METHOD FRAME 12

material statuses) are stored. Stored context is associated with

current time step. One time step can have only one associated

context. Multiple call to saveContext within same time step owerride

previously saved context for this step. By default the stream

paprameter is used to store data and is not closed. If stream is

NULL, new file descriptor is created and this must be also closed at

the end.

@param stream - context stream. If NULL then new file

descriptor will be openned and closed at the end else the stream

given as parameter will be used and not closed at the end.

@return contextIOResultType.

@exception throws an ContextIOERR exception if error encountered */

virtual contextIOResultType saveContext (FILE *stream, void *obj = NULL) ;

/** Restores the state of model from output stream. Restores not only

the receiver state, but also same function is invoked for all

DofManagers and Elements in associated domain. Note that by restoring

element context also contexts of all associated integration points

(and material statuses) are restored. Each context is associated

with unique time step. Only one context per time step is

allowed. Restore context function will restore such contex, which is

related (through its step number) to time step number and version

given in obj parameter. Restoring context will change current time

step in order to correspond to newly restored context.

@param stream context file

@param obj is a void pointer to an int array containing two values:time step number and

version of a context file to be restored.

@return contextIOResultType.

@exception throws an ContextIOERR exception if error encountered.

*/

virtual contextIOResultType restoreContext (FILE* stream, void* obj = NULL) ;

/** Updates domain links after the domains of receiver have

changed. Used mainly after restoring context - the domains may change

and this service is then used to update domain variables in all

components belonging to receiver like errorestimators, solvers, etc,

having domains as attributes. */

virtual void updateDomainLinks() {};

void resolveCorrespondingStepNumber (int&, int&, void* obj);

/// Returns current time step.

TimeStep* giveCurrentStep () {if (master) return master->giveCurrentStep();

else return currentStep;}

/// Returns previous time step.

TimeStep* givePreviousStep() {if (master) return master->givePreviousStep();

else return previousStep;}

/// Returns next time step (next to current step) of receiver.

virtual TimeStep* giveNextStep() {return NULL;}

/// Returns the solution step when Initial Conditions (IC) apply

virtual TimeStep* giveSolutionStepWhenIcApply()

{if (master) return master->giveCurrentStep();

else return stepWhenIcApply;}

/// Returns number of first time step used by receiver.

virtual int giveNumberOfFirstStep ()

{if (master) return master->giveNumberOfFirstStep();
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else return 1;}

/// Return number of meta steps

int giveNumberOfMetaSteps () {return nMetaSteps;}

/// Returns the i-th meta step

MetaStep* giveMetaStep (int i);

/// Returns total number of steps.

int giveNumberOfSteps()

{if (master) return master->giveNumberOfSteps();

else return numberOfSteps ;}

/// Returns end of time interest (time corresponding to end of time integration).

virtual double giveEndOfTimeOfInterest () {return 0.;}

/// Returns the time step number, when initial conditions should apply.

virtual int giveNumberOfTimeStepWhenIcApply()

{if (master) return master->giveNumberOfTimeStepWhenIcApply();

else return 0;}

/// Returns reference to receiver’s numerical method

virtual NumericalMethod* giveNumericalMethod (TimeStep*) {return NULL;}

/// Returns receiver’s export mudule manager

ExportModuleManager* giveExportModuleManager() {return exportModuleManager;}

/** Increases number of equations of receiver’s domain and returns

newly created equation number. Used mainly by DofManagers to

allocate their corresponding equation number if it is not currently

allocated. The DofIDItem parameter allows to distinguis between

several possible governing equations, that can be numbered

separately. */

virtual int giveNewEquationNumber (int domain, DofIDItem)

{return ++domainNeqs.at(domain);}

/** Increases number of prescribed equations of receiver’s domain and

returns newly created equation number. Used mainly by DofManagers to

allocate their corresponding equation number if it is not currently

allocated. The DofIDItem parameter allows to distinguis between

several possible governing equations, that can be numbered

separately. */

virtual int giveNewPrescribedEquationNumber (int domain, DofIDItem)

{return ++domainPrescribedNeqs.at(domain);}

/**

Assigns context file-descriptor for given step number to stream.

Returns nonzero on success.

@param stepNumber solution step number to store/restore

@param stepVersion version of step

@param cmode determines the i/o mode of context file

@param errLevel determines the amout of warning messages if

errors are encountered, level 0 no warnings reported.

*/

int giveContextFile (FILE** contextFile, int stepNumber, int stepVersion,

ContextFileMode cmode, int errLevel = 1) ;

/** Returns true if context file for given step and version is available */

bool testContextFile (int stepNumber, int stepVersion);

/**

Creates new DataReader for given domain.

Returns nonzero on success.

@param domainNum domain number
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@param domainSerNum domain seerial number

@param cmode determines the i/o mode of context file

*/

DataReader* GiveDomainDataReader (int domainNum, int domainSerNum,

ContextFileMode cmode) ;

/**

Updates components mapped to numerical method if necessary during solution process.

Some numerical methods may require updating

mapped components during solution process (e.g., updating of tanget stiffness

when using updated Newton-Raphson method).

@param tStep time when component is updated.

@param cmpn Numerical component to update.

*/

virtual void updateComponent (TimeStep* tStep, NumericalCmpn cmpn);

/**

Initializes solution of new time step. Default implementation

resets all internal history variables (in integration points of elements)

to previously reached equilibrium values.

Can be used for time step restart.

*/

virtual void initStepIncrements();

/** Forces equation renumbering on given domain. All equation numbers

in all dofManagers are invalidated, and new equation numbers are

generated starting from domainNeqs entry corresponding to given

domain. It will update numberOfEquations variable accordingly.

Should be used at startup to force equation numbering and therefore

sets numberOfEquations. Must be used if model supports changes of

static system to assign new valid equation numbers to dofManagers.

*/

virtual int forceEquationNumbering (int i);

/** Forces equation renumbering on all domains associated to engng

model. All equation numbers in all domains for all dofManagers are

invalidated, and new equation numbers are generated starting from 1

on each domain. It will update numberOfEquations variable

accordingly. Should be used at startup to force equation numbering

and therefore sets numberOfEquations. Must be used if model supports

changes of static system to assign new valid equation numbers to

dofManagers. */

virtual int forceEquationNumbering ();

/** Indicates if Engngmodel requires Dofs dictionaries to be updated.

If EngngModel does not support changes of static system, the dof

frowards the requests for its unknowns to EngngModel, where unknowns

are naturaly kept. This is posible, because dof equation number is

same during whole solution. But when changes of static system are

allowed, several problem arise. For example by solving simple

incremental static with allowed static changes, the incremetal

displacement vector of structure can not be added to total

displacement vector of structure, because equation numbers may have

changed, and one can not simply add these vector to obtain new total

displacement vector, because uncompatible displacement will be added.

To solve this problem, uknown dictionary at dof level has been
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assumed. Dof then keeps its unknowns in its onw private dictionary.

After computing increment of solution, engngModel updates for each

dof its unknowns in its dictionary (using updateUnknownsDictionary

function). For aforementioned example engngModel updates incremental

values but also total value by asking dof for previous total value

(dof will use its dictionary, does not asks back EngngModel) adds

corresponding increment and updates total value in dictionary.

*/

virtual int requiresUnknowsDictionaryUpdate () {return 0;}

/** Returns true if equation renumbering is required for given

solution step. This may of course change the number of equation and

in general there is no gauarantee that for a certain dof the same

eautiaon will be assigned. So the use of DOF unknowns dictionaries

is generally recomended. */

virtual bool requiresEquationRenumbering(TimeStep*) {return false;}

//virtual int supportsBoundaryConditionChange () {return 0;}

/**

Updates necessary values in Dofs unknown dictionaries.

@see EngngModel::requiresUnknowsDictionaryUpdate

@see Dof::updateUnknownsDictionary

*/

virtual void updateDofUnknownsDictionary (DofManager*, TimeStep*) {}

/** This method is responsible for computing unique dictionary id

(ie hash value) from given equationId, valueModeType and

timestep. This function is used by particular dofs to access unknown

identified by given params from its dictionary using computed index.

Usually the hash algorithm shoud produce index that depend on

timestep relativelly to actual one to avoid storage of complete

history.

*/

virtual int giveUnknownDictHashIndx (EquationID type, ValueModeType mode,

TimeStep* stepN) {return 0;}

// we don’t directlt call element ->GiveCharacteristicMatrix() function, because some

// engngm classes may require special modification of base types supported on

// element class level

/** Returns characteristic matrix of element. The

Element::GiveCharacteristicMatrix function should not be called

directly, because EngngModel may require some special modification of

characteristic matrices supported on element level. But default

implementation does the direct call to element level.

@param answer characteristic matrix

@param num element number

@param type type of CharMatrix requsted

@param tStep time step when response is computed

@param domain source domain

*/

virtual void giveElementCharacteristicMatrix (FloatMatrix& answer, int num,

CharType type, TimeStep* tStep, Domain* domain)
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{ domain->giveElement(num)->giveCharacteristicMatrix (answer, type, tStep);}

/** Returns characteristic vector of element. The

Element::GiveCharacteristicVector function should not be called

directly, because EngngModel may require some special modification of

characteristic vectors supported on element level. But default

implementation does the direct call to element level.

@param answer characteristic vector

@param num element number

@param type type of vector requsted

@param tStep time step when response is computed

@param domain source domain

*/

virtual void giveElementCharacteristicVector (FloatArray& answer, int num,

CharType type, ValueModeType mode, TimeStep* tStep, Domain* domain)

{ domain->giveElement(num)->giveCharacteristicVector (answer, type, mode, tStep);}

protected:

/**

Assembles characteristic matrix of required type into given sparse matrix.

@param answer assembled matrix

@param tStep time step, when answer is assembled.

@param ut determines type of equation and corresponding element code numbers

@param type characterisctic components of type type are requsted from elements and assembled.

@param domain source domain

*/

virtual void assemble (SparseMtrx *answer, TimeStep* tStep, EquationID ut,

CharType type, Domain* domain) ;

/**

Assembles characteristic matrix of required type into given sparse matrix.

@param answer assembled matrix

@param tStep time step, when answer is assembled.

@param r_id determines type of equation and corresponding element code numbers for matrix rows

@param c_id determines type of equation and corresponding element code numbers for matrix columns

@param type characterisctic components of type type are requsted from elements and assembled.

@param domain source domain

*/

virtual void assemble (SparseMtrx *answer, TimeStep* tStep, EquationID r_id,

EquationID c_id, CharType type, Domain* domain) ;

/**

Assembles characteristic vector of required type into given vector.

@param answer assembled vector

@param tStep time step, when answer is assembled.

@param type characterisctic components of type type are requsted

from dofManagers/elements and assembled.

*/

//virtual void assemble (FloatArray&, TimeStep*, CharType type,

Domain* domain) ;

/**

Assembles characteristic vector of required type from dofManagers into given vector.

@param answer assembled vector

@param tStep time step, when answer is assembled.

@param type characterisctic components of type type are requsted
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from dofManagers and assembled using code numbers.

*/

virtual void assembleVectorFromDofManagers (FloatArray&, TimeStep*, EquationID ut,

CharType type, ValueModeType mode,

Domain* domain) ;

/** Assembles prescribed characteristic vector of required type

from dofManagers into given vector.

@param answer assembled vector

@param tStep time step, when answer is assembled.

@param type characterisctic components of type type are requsted

from dofManagers and assembled using prescribed eqn numbers.

*/

void assemblePrescribedVectorFromDofManagers (FloatArray&, TimeStep*, EquationID,

CharType type, ValueModeType mode,

Domain* domain) ;

/**

Assembles characteristic vector of required type from elements into given vector.

@param answer assembled vector

@param tStep time step, when answer is assembled.

@param type characterisctic components of type type are requsted

from elements and assembled using using code numbers.

*/

void assembleVectorFromElements (FloatArray&, TimeStep*, EquationID,

CharType type, ValueModeType mode,

Domain* domain) ;

/**

Assembles prescribed characteristic vector of required type from

elements into given vector.

@param answer assembled vector

@param tStep time step, when answer is assembled.

@param type characterisctic components of type type are requsted

from elements and assembled using prescribed eqn numbers.

*/

void assemblePrescribedVectorFromElements (FloatArray&, TimeStep*, EquationID,

CharType type, ValueModeType mode, Domain* domain) ;

public:

// consistency check

/** Allows programmer to test some receiver’s internal data, before

computation begins.

@return nonzero if receiver check is o.k. */

virtual int checkConsistency () {return 1;} // returns nonzero if o.k.

/** Allows programmer to test problem its internal data, before computation begins.

@return nonzero if receiver check is o.k. */

int checkProblemConsistency (); // returns nonzero if o.k.

/**

Prints output of receiver to ouput domain stream, for given time step.

Corresponding function for element gauss points is invoked

(gaussPoint::printOutputAt).
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*/

virtual void printOutputAt (FILE *, TimeStep*) ;

// input / output

/// Prints stete of receiver. Usefull for debugging.

void printYourself () ;

/** DOF printing routine. Called by DofManagers to print Dof specific part.

Dof class provides component printing routines, but emodel is responsible

for what will be printed at DOF level.

@param stream output stream

@param iDof dof to be processed

@param atTime solution step

*/

virtual void printDofOutputAt (FILE* stream, Dof* iDof, TimeStep* atTime) = 0;

// identification

/// Returns class name of the receiver.

virtual const char* giveClassName () const { return "EngngModel" ;}

/// Returns classType id of receiver.

virtual classType giveClassID () const { return EngngModelClass ;}

/// Returns nonzero if receiver does incremental analysis.

virtual int isIncremental () {return 0;}

/// Returns nonzero if nonlocal stiffness option activated.

virtual int useNonlocalStiffnessOption () {return 0;}

/// retun true if receiver in parallel mode

bool isParallel () {return (parallelFlag != 0);}

/**

Indicates type of non linear computation (total or updated formulation).

This is used for example on Nodal level to update coordinates

if updated formulation

is done, or on element level, when non linear contributions are computed.

*/

virtual fMode giveFormulation () {return UNKNOWN;} // for non-linear computation

/*

Returns Load Response Mode of receiver.

This value indicates, whether nodes and elements should assemble

total or incremental load vectors.

virtual LoadResponseMode giveLoadResponseMode () {return TotalLoad;}

*/

/// Context requesting service

EngngModelContext* giveContext () {return this->context;}

/**

Returns number of slave problems */

virtual int giveNumberOfSlaveProblems() {return 0;}

/**Returns i-th slave problem */

virtual EngngModel* giveSlaveProblem (int i) {return NULL;}

/** Returns the Equation scaling flag, which is used to indicate

that governing equation(s) are scaled, or non-dimensionalized */
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virtual bool giveEquationScalingFlag () {return false;}

/// Returns the scale factor for given variable type

virtual double giveVariableScale (VarScaleType varId) {return 1.0;}

/**@name error and warning reporting methods These methods will

print error (or warning) message using oofem default loggers. Do

not use these methods directly, to avoid specify file and line

parameters. More preferably, use these methods via corresponding

OOFEM_CLASS_ERROR and OOFEM_CLASS_WARNING macros, that will include

file and line parameters automatically. Uses variable number of

arguments, so a format string followed by optional argumens is

expected (according to printf conventions).

@param file source file name, where error encountered (where error* function called)

@param line source file line number, where error encountered

*/

//@{

/// prints error message and exits

void error (char* file, int line, char *format, ...) const ;

/// prints warning message

void warning (char* file, int line, char *format, ...) const ;

//@}

};

typedef EngngModel Problem;

The key method declared by EngngModel is solveYourself, which starts the solution. It loops over all metasteps.
For each metastep, the loop over corresponding solution steps is performed. For each solution step, the value of
currentStep attribute is updated by invoking giveNextStep() service, and the solveYourselfAt is called, performing the
solution for given step. The currentStep is an attribute of EngngModel class. At the very beginning, it is set to NULL
or is initialized to the step from which analysis is restarted.

void

EngngModel :: solveYourself ()

{

int imstep, jstep;

int smstep=1, sjstep=1;

MetaStep* activeMStep;

#ifdef TIME_REPORT

oofem_timeval tstart;

#endif

// restart support - if currentStep is set already, start from the

// next one

if (this->currentStep) {

smstep = this->currentStep->giveMetaStepNumber();

sjstep = this->giveMetaStep(smstep)->

giveStepRelativeNumber(this->currentStep->giveNumber()) + 1;

}
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for (imstep = smstep; imstep<= nMetaSteps; imstep++) {

activeMStep = this->giveMetaStep(imstep);

for (jstep = sjstep; jstep <= activeMStep->giveNumberOfSteps(); jstep++)

{

#ifdef TIME_REPORT

::getUtime(tstart);

#endif

this->giveNextStep();

// update attributes according to new meta step attributes

if (jstep == sjstep) this->updateAttributes (this->giveCurrentStep());

this->solveYourselfAt(this->giveCurrentStep());

#ifdef TIME_REPORT

oofem_timeval ut;

::getRelativeUtime (ut, tstart);

printf ("\nEngngModel info: user time consumed by solution step %d: %.2fs\n",

jstep, (double)(ut.tv_sec+ut.tv_usec/(double)OOFEM_USEC_LIM));

#endif

}

}

}

The solveYourselfAt typically assembles characteristic matrices and vectors and solve the problem using the suitable
numerical method. After finishing the solution, the updateYourself service for updating solution state and then
terminate method (for updating nodal and element values) should be called to consistently update the state of all
components. The implementation should be provided by derived classes (see section 3.4 for an example).
The implementation of updateYourself service loops over all problem domains and calls corresponding update service
for all DOF managers and elements. The terminate service prints the required outputs and optionally saves the context
file (if required), so the solution can be restarted from this saved state later. Both services are virtual, so they can be
easily tailored to specific needs.

void

EngngModel :: updateYourself (TimeStep* stepN)

{

int idomain, ndomains = this->giveNumberOfDomains();

int j, nnodes;

Domain* domain;

for (idomain = 1; idomain <= ndomains; idomain++) {

domain= this->giveDomain(idomain);

# ifdef VERBOSE

VERBOSE_PRINT0("Updating domain ",domain->giveNumber())

# endif

nnodes = domain->giveNumberOfDofManagers ();

for( j=1;j<=nnodes;j++) {

domain->giveDofManager(j)->updateYourself(stepN) ;

}
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# ifdef VERBOSE

VERBOSE_PRINT0("Updated nodes & sides ",nnodes)

# endif

Element* elem;

int nelem = domain->giveNumberOfElements ();

for (j=1 ; j<=nelem ; j++) {

elem = domain -> giveElement(j) ;

#ifdef __PARALLEL_MODE

// skip remote elements (these are used as mirrors

// of remote elements on other domains, when nonlocal

// constitutive models are used.

// Their introduction is necessary to allow local

// averaging on domains without fine grain

// communication between domains)

if (elem->giveParallelMode () == Element_remote) continue;

#endif

elem -> updateYourself(stepN);

}

# ifdef VERBOSE

VERBOSE_PRINT0("Updated Elements ",nelem)

# endif

}

}

void

EngngModel :: terminate (TimeStep* stepN)

{

FILE* File = this->giveOutputStream();

// print output

this->printOutputAt (File, stepN);

// save context if required

// default - save only if ALWAYS is set ( see cltypes.h )

if ((this->giveContextOutputMode() == ALWAYS) ||

(this->giveContextOutputMode() == REQUIRED)) {

this->saveContext(NULL);

} else if (this->giveContextOutputMode() == USERDEFINED) {

if (stepN->giveNumber()%this->giveContextOutputStep() == 0)

this->saveContext(NULL);

}

}

The implementations of services for characteristic components assembly are provided. They simply loop over nodes or
elements (depending on the character of the requested component) of the given domain, requesting the corresponding
component contributions and corresponding code numbers. The component contributions are assembled (using code
numbers) into a target array or matrix. The implementation of assemble for characteristic vectors has to determine
whether the contribution comes from node or element. The implementation presented here uses the hard-wired decision
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rules (adapted for structural analysis), which in other cases leads the overloading of basic implementation. The better
solution will be probably to call some virtual service, which returns the source of contribution (nodal or element
contribution) and then to perform corresponding loop.

void EngngModel :: assemble (SparseMtrx* answer, TimeStep* tStep, EquationID ut,

CharType type, Domain* domain)

//

// assembles matrix answer by calling

// element(i) -> giveCharacteristicMatrix ( type, tStep );

// for each element in domain

// and assembling every contribution to answer

//

//

{

int ielem;

IntArray loc ;

FloatMatrix mat;

Element *element;

if (answer == NULL) _error("assemble: NULL pointer encountered.");

int nelem = domain -> giveNumberOfElements ();

for ( ielem = 1; ielem <= nelem ; ielem++ ) {

element = domain -> giveElement(ielem);

#ifdef __PARALLEL_MODE

// skip remote elements (these are used as mirrors of remote eleemnts on other domains

// when nonlocal constitutive models are used. They introduction is necessary to

// allow local averaging on domains without fine grain communication between domains).

if (element->giveParallelMode () == Element_remote) continue;

#endif

element -> giveLocationArray (loc, ut);

this->giveElementCharacteristicMatrix(mat, ielem, type, tStep, domain );

if (mat.isNotEmpty()) {

if (answer -> assemble (loc, mat) == 0)

_error("assemble: sparse matrix assemble error");

}

}

answer->assembleBegin();

answer->assembleEnd();

}

void EngngModel :: assembleVectorFromDofManagers

(FloatArray& answer, TimeStep* tStep, EquationID ut,

CharType type, ValueModeType mode, Domain* domain)

//

// assembles matrix answer by calling

// node(i) -> computeLoadVectorAt (tStep);

// for each element in domain

// and assembling every contribution to answer

//

//

{

int i ;
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IntArray loc ;

FloatArray charVec ;

DofManager *node ;

int nnode = domain -> giveNumberOfDofManagers();

for (i = 1; i <= nnode ; i++ ) {

node = domain -> giveDofManager(i);

node -> computeLoadVectorAt (charVec, tStep, mode);

if(charVec.giveSize()) {

node -> giveCompleteLocationArray (loc);

answer.assemble (charVec, loc) ;

}

}

}

void EngngModel :: assembleVectorFromElements

(FloatArray& answer, TimeStep* tStep, EquationID ut,

CharType type, ValueModeType mode, Domain* domain)

//

// assembles matrix answer by calling

// element(i) -> giveCharacteristicMatrix ( type, tStep );

// for each element in domain

// and assembling every contribution to answer

//

//

{

int i ;

IntArray loc ;

FloatArray charVec ;

Element *element ;

int nelem = domain -> giveNumberOfElements ();

for (i = 1; i <= nelem ; i++ ) {

element = domain -> giveElement(i);

#ifdef __PARALLEL_MODE

// skip remote elements (these are used as mirrors of remote eleemnts on other domains

// when nonlocal constitutive models are used. They introduction is necessary to

// allow local averaging on domains without fine grain communication between domains).

if (element->giveParallelMode () == Element_remote) continue;

#endif

element -> giveLocationArray (loc, ut);

this -> giveElementCharacteristicVector (charVec, i, type, mode, tStep, domain);

if(charVec.giveSize()) answer.assemble (charVec, loc) ;

}

}

void EngngModel :: assemblePrescribedVectorFromDofManagers

(FloatArray& answer, TimeStep* tStep, EquationID ut,

CharType type, ValueModeType mode, Domain* domain)

//

// assembles matrix answer by calling

// node(i) -> computeLoadVectorAt (tStep);
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// for each element in domain

// and assembling every contribution to answer

//

//

{

int i ;

IntArray loc ;

FloatArray charVec ;

DofManager *node ;

int nnode = domain -> giveNumberOfDofManagers();

for (i = 1; i <= nnode ; i++ ) {

node = domain -> giveDofManager(i);

node -> computeLoadVectorAt (charVec, tStep, mode);

if(charVec.giveSize()) {

node -> giveCompletePrescribedLocationArray (loc);

answer.assemble (charVec, loc) ;

}

}

}

void EngngModel :: assemblePrescribedVectorFromElements

(FloatArray& answer, TimeStep* tStep, EquationID ut,

CharType type, ValueModeType mode, Domain* domain)

//

// assembles matrix answer by calling

// element(i) -> giveCharacteristicMatrix ( type, tStep );

// for each element in domain

// and assembling every contribution to answer

//

//

{

int i ;

IntArray loc ;

FloatArray charVec ;

Element *element ;

int nelem = domain -> giveNumberOfElements ();

for (i = 1; i <= nelem ; i++ ) {

element = domain -> giveElement(i);

#ifdef __PARALLEL_MODE

// skip remote elements (these are used as mirrors of remote eleemnts on other domains

// when nonlocal constitutive models are used. They introduction is necessary to

// allow local averaging on domains without fine grain communication between domains).

if (element->giveParallelMode () == Element_remote) continue;

#endif

element -> givePrescribedLocationArray (loc, ut);

if (loc.containsOnlyZeroes()) continue;

this -> giveElementCharacteristicVector (charVec, i, type, mode, tStep, domain);

if(charVec.giveSize()) answer.assemble (charVec, loc) ;

}

}
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Figure 2: Engng model - Numerical method Interface.

3.2 Numerial Method Interface

In order to solve the governing equation, the instance of a suitable numerical method is created. Engng model may
use different numerical methods, depending, for example, on problem size or previous convergence.
Typically, each particular Engng model instance is responsible for mapping of its governing equation components to
corresponding numerical components. Such mapping allows the numerical method implementation to be independent
of a particular physical problem by strictly dealing with numerical components, which are mapped to corresponding
physical components of governing equation, that are hidden to numerical method.
Engng model must also provide services for updating its components, if this is necessary. These are used, when
the Numerical Method instance needs to update some components during solution (for example in the Newton
Raphson algorithm for the solution of non-linear equations, stiffness has to be updated after each iteration). Similarly,
a high-level numerical method may use the services of another low-level numerical method (solver for non-linear system
of equations uses linear solver for linearized problem). Numerical method instance may also represent an interface
to a procedure in C or Fortran (see Fig. ??.).
The derived classes from Numerical method are supposed to declare the interface for specific problem type (like
solution of linear system). The interface usualy consist in declaring virtual abstract function solve, with parameters
corresponding to problem under consideration. The solve method shoud return value of NM Status type. The data are
specified using parameters passed to solve method (so called mapping). (Other optional parameters can be provided
via instanciateYourself service, which receives the init record of corresponding metastep).
It should be pointed out, that all numerical methods solving the same numerical problem use the same genaral interface
(same mapping) - this is enforced by using the same base problem-specific class. It is therefore possible to use any
suitable instance of the Numerical method class to solve the problem, and leave the whole engineering model code,
including mapping, unchanged, because all instances of the Numerical method class provide the common interface.
This concept is further enhanced by the introduction of a base abstract class for all sparse matrices. This class
only declares the basic required services provided by all sparse matrices (like multiplication by a vector, possible
factorization, etc). The implementation is left on derived classes. Numerical methods are then implemented only
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Figure 3: Engng model - Numerical method Interface.

using basic services declared by the Sparse Matrix class. Thus, numerical method class instances will work with
any sparse matrix class, even those added in the future, without changing any code, because all derived classes of the
Sparse Matrix class implement the same interface.
The declaration of SparseLinearSystem class (typical problem-specific base class defining the interface for solving
sparse system of equations) is listed to illustrate the basic concepts.

// **********************************

// *** CLASS SparseLinearSystemNM ***

// **********************************

#ifndef sparselinsystemnm_h

#include "nummet.h"

#include "cltypes.h"

#include "typeInfo.h"

#include <stdio.h>

class EngngModel ; class SparseMtrx; class FloatArray;

/**

This base class is an abstraction for all numerical methods

solving sparse linear system of equations.

The purpose of this class is to declare the general interface

to all numerical methods solving this kind of problem.

This interface allows to use any suitable instance of the

Numerical method class to the solve problem,

and leave the whole engineering model code,
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including mapping, unchanged, because all instances of this class

provide the common interface.

*/

class SparseLinearSystemNM : public NumericalMethod

{

protected:

public:

/// Constructor

SparseLinearSystemNM (int i, Domain* d,EngngModel* m);

/// Destructor

~SparseLinearSystemNM ();

// identification

/// Returns class name of the receiver.

char* giveClassName (char* s) const

{ return strcpy(s,"SparseLinearSystemNM") ;}

/** Returns classType id of receiver.

@see FEMComponent::giveClassID

*/

classType giveClassID () const { return SparseLinearSystemNMClass ;}

/**

Solves the given sparse linear system of equations Ax=b.

@param A coefficient matrix

@param b right hand side

@param x solution array

@return NM_Status value

*/

virtual NM_Status solve (SparseMtrx* A, FloatArray* b, FloatArray* x) = 0;

public:

};

#define sparselinsystemnm_h

#endif

To summarize, the natural independence of the problem formulation, numerical solution of the problem, and data
storage format have been obtained, which leads to a modular and extensible structure of the engineering model -
numerical method frame.

3.3 Grid Representation - Domain

The computational grid is represented by Domain class. It stores all the components of the FEM model. These
are dof managers (nodes, element sides possessing DOFs), elements, material and cross section models, boundary
conditions (primary boundary conditions as well as applied loading), and initial conditions. For every component type
the Domain maintains the component list and provides the corresponding access services. Domain keeps its number
and link to associated problem (EngngModel). It also keeps its domain type, which determines the default number
of Dofs per node (or side) and their physical meanings. Note, that this default setting can be redefined by particular
nodes or sides. The basic services provided by Domain are the following

• Reading its description from input and creating corresponding objects. This task includes the reading and
parsing the particular mesh input records, creating the corresponding components representations (objects) of
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appropriate type, initializing these components using theirs instanciteFromString methods and storing them into
corresponding list.

• Provides services for accessing its particular components. The services returning the total number of particular
domain components and particular component access methods based on component number are provided.

Domain also contains instance of OutputManager manager class, which implements the output filtering capabilities.
It allows to filter output for specific solution steps, elements and dof managers. The domain also can create (if needed)
instances of SpatialLocalizer class and connectivityTable class to serve the connectivity and spatial localization
related services (finding elements shared by the node, finding the closest node search, finding the element containing
given point, etc.).

3.4 Example - Linear Static Analysis

In this section, the example of the implementation of linear static analysis will be shown. The meta steps are not used,
so the default one is created. The class definition includes the declaration of characteristic components of the problem
- the stiffness matrix and load and displacement vectors. Two additional variables are used to store the solver type and
the sparse matrix type, which can be selected by the user. The services for solving the solution step (solveYourselfAt),
requesting unknowns (giveUnknownComponent), context i/o (saveContext and restoreContext), problem initialization
(initializeFrom), and consistency checking (checkConsistency) are overloaded.

class LinearStatic : public StructuralEngngModel

{

/*

This class implements LinearStatic Engineering problem.

Multiple loading works only if linear elastic material (such as isoLE) is used.

(Other non-linear materials kepp load history, so such multiple loading

will cause that next step will be assumed as new load increment,

not the total new load). Because they always copute real stresses acording

to reached strain state, they are not able to respond to linear analysis.

DESCRIPTION:

Solution of this problem is series of loading cases, maintained as sequence of

time-steps. This solution is in form of linear equation system Ax=b

TASK:

Creating Numerical method for solving Ax=b

Interfacing Numerical method to Elements

Managing time steps

*/

protected:

SparseMtrx* stiffnessMatrix;

FloatArray loadVector;

FloatArray displacementVector;

LinSystSolverType solverType;

SparseMtrxType sparseMtrxType;

/// Numerical method used to solve the problem

SparseLinearSystemNM *nMethod;

int initFlag;

#ifdef __PETSC_MODULE

Vec _loadVec, _dispVec;



3 ENGINEERING MODEL — NUMERICAL METHOD FRAME 29

#endif

public:

LinearStatic (int i, EngngModel* _master = NULL) ;

~LinearStatic ()

{delete stiffnessMatrix; if (nMethod) delete nMethod;}

// solving

void solveYourself ();

void solveYourselfAt (TimeStep *);

//int requiresNewLhs () {return 0;}

/**

Updates nodal values

(calls also this->updateDofUnknownsDictionary for updating dofs unknowns dictionaries

if model supports changes of static system). The element internal state update is also forced using

updateInternalState service.

*/

virtual void updateYourself (TimeStep*) ;

double giveUnknownComponent ( EquationID, ValueModeType, TimeStep*, Domain*, Dof*);

contextIOResultType saveContext (FILE* stream, void *obj = NULL) ;

contextIOResultType restoreContext (FILE* stream, void *obj = NULL);

void updateDomainLinks();

TimeStep* giveNextStep ();

NumericalMethod* giveNumericalMethod (TimeStep*);

//void printReactionForces (TimeStep *);

void terminate (TimeStep*);

IRResultType initializeFrom (InputRecord* ir);

// consistency check

virtual int checkConsistency (); // returns nonzero if o.k.

/** DOF printing routine. Called by DofManagers to print Dof specific part.

Dof class provides component printing routines, but emodel is responsible

for what will be printed at DOF level.

@param stream output stream

@param iDof dof to be processed

@param atTime solution step

*/

virtual void printDofOutputAt (FILE* stream, Dof* iDof, TimeStep* atTime);

// identification

const char* giveClassName () const { return "LinearStatic";}

classType giveClassID () const { return LinearStaticClass;}

fMode giveFormulation () { return TL; }

#ifdef __PARALLEL_MODE

/**

Determines the space necessary for send/receive buffer.

It uses related communication map pattern to determine the maximum size needed.

@param commMap communication map used to send/receive messages

@param buff communication buffer

@return upper bound of space needed

*/
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int estimateMaxPackSize (IntArray& commMap, CommunicationBuffer& buff, int packUnpackType) ;

#endif

} ;

The listing of the LinearStatic class implementation follows. First, the giveNumericalMethod returns the numerical
method, which will be used. The new instance is created if not defined according to nMethod attribute, which is
initialized from input (see instanciateYourself). Note, that thanks to the general interface, defined by the Numer-
icalMethod class and the component mapping approach, the further communication with the numerical method
uses only the interface declared by the base NumerialMethod class and therefore there is no need to worry about
particular numerical method details.

NumericalMethod* LinearStatic :: giveNumericalMethod (TimeStep* atTime)

// only one has reason for LinearStatic

// - SolutionOfLinearEquations

{

if (nMethod) return nMethod ;

SparseLinearSystemNM* nm;

if (solverType == ST_Direct) {

nm = (SparseLinearSystemNM*) new LDLTFactorization (1,this->giveDomain(1),this);

nMethod = nm;

return nm;

} else {

nm = (SparseLinearSystemNM*) new IMLSolver (1,this->giveDomain(1),this);

nMethod = nm;

return nm;

}

}

IRResultType

LinearStatic :: initializeFrom (InputRecord* ir)

{

// Required by IR_GIVE_FIELD macro

const char *__keyword, *__proc = "initializeFrom";

IRResultType result;

StructuralEngngModel::initializeFrom (ir);

int val = 0;

IR_GIVE_OPTIONAL_FIELD (ir, val, "lstype"); // Macro

solverType = (LinSystSolverType) val;

val = 0;

IR_GIVE_OPTIONAL_FIELD (ir, val, "smtype"); // Macro

sparseMtrxType = (SparseMtrxType) val;

return IRRT_OK;

}

double LinearStatic :: giveUnknownComponent (EquationID chc, ValueModeType mode,

TimeStep* tStep, Domain* d, Dof* dof)
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// returns unknown quantity like displaacement, velocity of equation eq

// This function translates this request to numerical method language

{

int eq = dof->giveEquationNumber();

if (eq == 0) _error ("giveUnknownComponent: invalid equation number");

if (tStep != this->giveCurrentStep ()) {

_error ("giveUnknownComponent: unknown time step encountered");

return 0.;

}

if (chc != EID_MomentumBalance) {

_error ("giveUnknownComponent: Unknown is of undefined CharType for this problem");

return 0.;

}

switch (mode)

{

case VM_Total:

case VM_Incremental:

if (displacementVector.isNotEmpty()) return displacementVector.at(eq);

else return 0.;

// return nMethod-> giveUnknownComponent (LinearEquationSolution, eq);

default:

_error ("giveUnknownComponent: Unknown is of undefined type for this problem");

}

return 0.;

}

TimeStep* LinearStatic :: giveNextStep ()

{

int istep = this->giveNumberOfFirstStep();

//int mstep = 1;

StateCounterType counter = 1;

delete previousStep;

if (currentStep != NULL) {

istep = currentStep->giveNumber() + 1 ;

counter = currentStep->giveSolutionStateCounter() + 1;

}

previousStep = currentStep;

currentStep = new TimeStep (istep,this, 1, (double) istep, 0., counter);

// time and dt variables are set eq to 0 for staics - has no meaning

return currentStep;

}

void LinearStatic :: solveYourselfAt (TimeStep* tStep) {

//

// creates system of governing eq’s and solves them at given time step

//

// first assemble problem at current time step
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if (initFlag) {

#ifdef VERBOSE

OOFEM_LOG_INFO("Assembling stiffness matrix\n");

#endif

//

// first step assemble stiffness Matrix

//

/*

IntArray* mht = this -> GiveBanWidthVector ();

stiffnessMatrix = new Skyline ();

stiffnessMatrix -> checkSizeTowardsBanWidth (mht) ;

delete mht;

*/

stiffnessMatrix = ::CreateUsrDefSparseMtrx(sparseMtrxType); // new Skyline ();

if (stiffnessMatrix==NULL) _error ("solveYourselfAt: sparse matrix creation failed");

//stiffnessMatrix = new DynCompCol ();

//stiffnessMatrix = new CompCol ();

stiffnessMatrix->buildInternalStructure (this, 1, EID_MomentumBalance);

this -> assemble (stiffnessMatrix, tStep, EID_MomentumBalance, StiffnessMatrix, this->giveDomain(1));

//

// alocate space for displacementVector

//

//displacementVector = new FloatArray (this->giveNumberOfEquations());

displacementVector.resize (this->giveNumberOfEquations(EID_MomentumBalance));

displacementVector.zero();

#ifdef __PETSC_MODULE

if (solverType == ST_Petsc) {

this->givePetscContext(1, EID_MomentumBalance)->createVecGlobal (&_loadVec);

this->givePetscContext(1, EID_MomentumBalance)->createVecGlobal (&_dispVec);

}

#endif

initFlag = 0;

}

#ifdef VERBOSE

OOFEM_LOG_INFO("Assembling load\n");

#endif

#ifdef __PETSC_MODULE

// direct interface to PETSC

if (solverType == ST_Petsc) {

this->petsc_assembleVectorFromElements(_loadVec, tStep, EID_MomentumBalance,

ElementForceLoadVector, VM_Total,

this->giveDomain(1));

this->petsc_assembleVectorFromElements(_loadVec, tStep, EID_MomentumBalance,

ElementNonForceLoadVector, VM_Total,

this->giveDomain(1));

this->petsc_assembleVectorFromDofManagers(_loadVec, tStep, EID_MomentumBalance,
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NodalLoadVector, VM_Total,

this->giveDomain(1)) ;

VecAssemblyBegin(_loadVec);

VecAssemblyEnd (_loadVec);

this->giveNumericalMethod(tStep);

#ifdef VERBOSE

OOFEM_LOG_INFO("Solving ...\n");

#endif

//nMethod -> solveYourselfAt(tStep);

PetscSolver *ps = dynamic_cast<PetscSolver*>(nMethod);

PetscSparseMtrx* psm = dynamic_cast<PetscSparseMtrx*>(stiffnessMatrix);

ps -> petsc_solve (psm, _loadVec, _dispVec);

this->givePetscContext(1, EID_MomentumBalance)->scatterG2N (_dispVec, &displacementVector, INSERT_VALUES);

} else

#endif

{

//

// assembling the element part of load vector

//

//loadVector = new FloatArray (this->giveNumberOfEquations());

loadVector.resize (this->giveNumberOfEquations(EID_MomentumBalance));

loadVector.zero();

this->assembleVectorFromElements(loadVector, tStep, EID_MomentumBalance,

ElementForceLoadVector, VM_Total, this->giveDomain(1));

this->assembleVectorFromElements(loadVector, tStep, EID_MomentumBalance,

ElementNonForceLoadVector, VM_Total, this->giveDomain(1));

//

// assembling the nodal part of load vector

//

this->assembleVectorFromDofManagers(loadVector, tStep, EID_MomentumBalance,

NodalLoadVector, VM_Total, this->giveDomain(1)) ;

//

// set-up numerical model

//

this->giveNumericalMethod(tStep);

/*

nMethod -> setSparseMtrxAsComponent ( LinearEquationLhs , stiffnessMatrix) ;

nMethod -> setFloatArrayAsComponent ( LinearEquationRhs , &loadVector) ;

nMethod -> setFloatArrayAsComponent ( LinearEquationSolution, &displacementVector) ;

*/

//

// call numerical model to solve arised problem

//

#ifdef VERBOSE

OOFEM_LOG_INFO("Solving ...\n");

#endif

//nMethod -> solveYourselfAt(tStep);
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nMethod -> solve (stiffnessMatrix, &loadVector, &displacementVector);

}

tStep->incrementStateCounter(); // update solution state counter

//

// update nodes, elements, etc.

this->updateYourself(this->giveCurrentStep());

}

void LinearStatic :: updateYourself (TimeStep* stepN)

{

this->updateInternalState(stepN);

StructuralEngngModel::updateYourself(stepN);

}

contextIOResultType LinearStatic :: saveContext (FILE* stream, void *obj)

//

// saves state variable - displacement vector

//

{

contextIOResultType iores;

int closeFlag = 0;

if (stream==NULL) {

if (!this->giveContextFile(&stream,this->giveCurrentStep()->giveNumber(),

contextMode_write))

THROW_CIOERR(CIO_IOERR); // override

closeFlag = 1;

}

if ((iores = StructuralEngngModel :: saveContext (stream)) != CIO_OK)

THROW_CIOERR(iores);

if ((iores = displacementVector.storeYourself(stream)) != CIO_OK)

THROW_CIOERR(iores);

if (closeFlag) fclose (stream); // ensure consistent records

return CIO_OK;

}

contextIOResultType LinearStatic :: restoreContext (FILE* stream, void *obj)

//

// restore state variable - displacement vector

//

{

contextIOResultType iores;

int closeFlag = 0;

int istep = this->resolveCorrespondingStepNumber (obj);

if (stream == NULL) {

if (!this->giveContextFile(&stream, istep, contextMode_read))
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THROW_CIOERR(CIO_IOERR); // override

closeFlag = 1;

}

if ((iores=StructuralEngngModel::restoreContext(stream,obj))!=CIO_OK)

THROW_CIOERR(iores);

if ((iores=displacementVector.restoreYourself(stream))!=CIO_OK)

THROW_CIOERR(iores);

if (closeFlag) fclose (stream); // ensure consistent records

return CIO_OK;

}

void

LinearStatic:: terminate(TimeStep* tStep)

{

StructuralEngngModel :: terminate (tStep);

this->printReactionForces (tStep, 1);

}

int

LinearStatic::checkConsistency ()

{

// check internal consistency

// if success returns nonzero

int i, nelem;

Element* ePtr;

StructuralElement* sePtr;

Domain* domain = this->giveDomain(1);

nelem = domain->giveNumberOfElements();

// check for proper element type

for (i=1; i<= nelem; i++) {

ePtr = domain->giveElement(i);

sePtr = DYNAMIC_CAST (StructuralElement, ePtr);

if (sePtr == NULL) {

printf ("Error: Element %d has no StructuralElement base\n",i);

return 0;

}

}

EngngModel :: checkConsistency ();

return 1;

}
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void

LinearStatic::updateDomainLinks ()

{

EngngModel::updateDomainLinks();

this->giveNumericalMethod(giveCurrentStep())->setDomain (this->giveDomain(1));

}

4 Material — Element Frame

As already mentioned, in Fig. 2 the material-element frame is schematically shown. In this frame, the following base
classes & objects are introduced:

• Class Element, which is an abstraction of a finite element. It declares common general services, provided by all
elements. Derived classes are the base classes for specific analysis types (structural analysis, thermal analysis).
They declare and implement necessary services for specific analysis.

• Integration point class & object: It is an abstraction for the integration point of the finite element. It
maintains its coordinates and integration weight. Any integration point can generally contain any number of
other integration points - called slaves. The Integration point containing slaves is called master. Slaves
are, for example, introduced by a layered cross section model, where they represent integration points for each
layer, or can be introduced at material model level, where they may represent, for example, micro-planes. Slave
integration points are hidden from elements. The Integration point also contains associated material status
(the reasons for introducing this feature will be explained later).

• Cross section class is an abstraction for cross section. Its main role is to hide from an element all details
concerning the cross section description and implementation. By cross section description is meant, for example,
an integral cross section model, layered cross section model or fibered model. Elements do not communicate
directly with material, instead they always use a Cross Section interface, which performs all necessary inte-
gration over its volume and invokes necessary material class services2. The Cross section interface, defined in
terms of general functions, allows the use of any cross section model, even that added in the future, without
modification of any code, because all cross section models implement the same interface.

• Material class is shown here. It represents base class for all constitutive models. Derived classes should be the
base analysis-specific classes, which declare required analysis specific services (for example structural material
class declares services for the stiffness computation and services for the real stress evaluation). Again, the
material analysis specific interface, defined in terms of general services, allows the use of any material model,
even that added in the future, without modifying any code, because all material models implement the same
interface.

One of the most important goals, which have been formulated, is extensibility. In the case of extension of the material
library, the analyst is facing a key problem. Every material model must store its unique history parameters for every
related integration point. The amount, type, and meaning of these history variables vary for each material model.
Therefore, it is not possible to efficiently match all needs and to reflect them in the integration point data structure.
The suggested remedy is the following:
The Integration point class is equipped with the possibility to have associated a Material status class. When a
new material model is implemented, the analyst has also to declare and implement a related material status derived
from the base Material status class to this material model. This status contains all necessary history variables
and data access and modification services. The Integration point provides services for inserting and accessing its

2For some problems, the use of cross section is not necessary, and then the elements can communicate directly with material model.
However, for some problems (for example structural analysis) the introduction of cross section is natural.
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Figure 4: Element-material frame structure.

related status. For every Integration point, the corresponding material creates unique copy of its related material
status and associates it with that integration point. Because the Integration point is a compulsory parameter of
all messages sent to any material model, the particular material model can access its related material status from the
given Integration point, and therefore can access its history variables.
In Fig. 4, the material - element frame is depicted in more detail, although it is still simplified. A simple cross
section model class hierarchy is shown there. There are two derived classes from the parent Cross Section class:
Simple cross section class representing an integral cross section model and Layered cross section model class,
representing a layered cross section model implementation. At the bottom, the hierarchies of the material model
and the associated material status representations are indicated. The program flow for an element, requesting the
computation of its real nodal forces is also indicated in Fig. 4. This is generally done by integrating real stresses
at its integration points. For each Integration point it asks the Cross section model to compute real stresses
at the given integration point. In this example, the Layered cross section uses the master-slave integration point
principle. Each element integration point, here called master, contains its slaves, each representing one layer. These
slave integration points are introduced by the cross section model, and are hidden to the element. For a given master
integration point, the cross section model performs integration over cross section volume using slaves. Therefore each
slave integration point, which is requested by the master, uses material model class services to compute real stresses
for each corresponding layer, passing the slave integration point as a parameter. Then for each slave, the material
model asks the given integration point for its associated status. Having obtained reference to it, the material model
can access all its history variables through status services, and computes results.
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4.1 Base Element class

This class is the base class for all FE elements. It is also the abstract class, declaring some services, which have
to be implemented by the derived classes. The main purpose of this class is to serve the basic common services,
which are common to all finite elements (like storing the references to element’s material model, nodes and applied
loadings, assembling location array, storing from/to context file, etc.). The Element class does neither declare nor
implement any method related to specific analysis. These services are to be declared and possibly implemented by
derived classes.3 These derived classes (direct children of Element class) are therefore assumed to be base classes for
particular analysis or problem type, represented by corresponding engng model. They typically declare the general
services required for a specific analysis purpose - like evaluation of stiffness or mass matrices for structural analysis,
or evaluation of capacity and conductivity matrices for heat transfer analysis. Usually they also provide general
implementation of these services.
The Element is derived from a FEMComponent. It inherits the FEMComponent’s ability to keep its number and
reference to the domain, it belongs to, its error and warning reporting services, methods for field extraction functions
from object record (used when element reads its description from input database). Also the FEMComponent
declares several abstract services. The most important are initializeFrom for object initialization from a given record,
saveContext and restoreContext methods for storing and restoring object state to/from a stream, and giveInterface
service for requesting an object interface.
The attributes declared at the Element class include the variables used to keep its list of nodes and sides, its material
and cross section number, lists of applied body and boundary loads, list of integration rules and array storing its code
numbers (see OOFEM library reference manualfor details).
The following important services are declared at the element level:

• services for component management - include services for requesting element’s geometrical characteristics (giveD-
ofManager, giveNode, giveNumberOfDofManagers, giveNumberOfNodes), material (giveMaterial), cross section
(giveCrossSection).

• services related to code numbers management:
giveLocationArray - returns the element location array. This location array is obtained by appending code-
numbers of element nodes (according to the node numbering), followed by code numbers of element sides. The
ordering of DOFs for the particular node/side is specified using a node/side DOF mask, which is obtained using
giveNodeDofIDMask or giveSideDofIDMask services. Please note, that this local DOF ordering must be taken
into account when assembling various local characteristic vectors and matrices. Once the element location array
is assembled, it is cached and reused to avoid time consuming assembly. Some engineering models may support
dynamic changes of the static system (generally, of boundary conditions) during analysis, then these models
use invalidateLocationArray function to invalidate location array after finishing time step, to force new equation
numbering.
computeNumberOfDofs - computes or simply returns total number of element’s local DOFs. Must be implemented
by particular element. The giveDofManDofIDMask service return DOF mask for corresponding dof manager
(node or side). This mask defines the DOFs which are used by element at the given node/side. The mask
influences the code number ordering for the particular node. Code numbers are ordered according to the node
order and DOFs belonging to the particular node are ordered according to this mask. If element requests DOFs
using a node mask which are not in the node then error is generated. This masking allows node to be shared
by different elements with different DOFs in the same node/side. Element’s local code numbers are extracted
from the node/side using this mask. These services must be implemented (overloaded) by particular element
implementations.

• services for requesting the so-called characteristic components. (giveCharacteristicMatrix and giveCharacteris-
ticVector). The component requested is identified by parameter of type “CharType” (see cltypes.h). These are

3 When a specific services are required at element level by other components of a system (error estimator, graphics subsystem, etc.)
they can be included using so-called interface concept at particular element level using multiple inheritance.

http://www.oofem.org


4 MATERIAL — ELEMENT FRAME 39

general methods for obtaining various element contributions to the global problem. These member functions
have to be overloaded by derived analysis-specific classes in order to invoke the proper method according to the
type of requested component.

• services related to the solution step update and termination.
These services are used to update the internal variables at element’s integration points prior to reached state
(updateYourself and updateInternalState). Similar service for the internal state initialization is also declared (see
initializeYourself) and re-initialization to previous equilibrium state (see initForNewStep).

• services for accessing local element’s unknowns from corresponding DOFs. These include methods for requesting
local element vector of unknowns (computeVectorOf) and local element vector of prescribed unknowns (com-
puteVectorOfPrescribed).

• Services for handling transformations between element local coordinate system and coordinate system used in
nodes (possibly different from global coordinate system).

• miscellaneous services. Their detailed description can be found in OOFEM library reference manual(see also
“element.h” (declaration) and “element.C” (implementation) files).

4.2 Analysis specific element classes

The direct child classes of the Element class are assumed to be base classes for particular analyses. For example, the
StructuralElement class is the base class for all “structural” elements. It declares all necessary services required
by structural analysis (for example methods computing stiffness matrices, load, strain and stress vectors etc.). This
class may provide general implementations of some of these services if possible, implemented by virtual functions
(they reflect specific element formulation - like computing element shape functions), which are declared, but their
implementation is left on derived classes, which implement specific elements.

4.2.1 Structural Element - Example

This class is the base class for all structural elements. It is derived from the Element class. The basic tasks of the
structural element is to compute its contributions to global equilibrium equations (mass and stiffness matrices, various
load vectors (due to boundary conditions, force loading, thermal loading, etc.) and computing the corresponding
strains and stresses from nodal displacements. Therefore the corresponding virtual services for computing these
contributions are declared. These standard contributions can be computed by numerical integration of appropriate
terms, which typically depend on element interpolation or material model, over the element volume. Therefore, it is
possible to provide general implementations of these services, provided that the corresponding methods for computing
interpolation dependent terms and material terms are implemented, and corresponding integration rules are initialized.
This concept will be demonstrated on service computing stiffness matrix. Since element stiffness matrix contributes
to the global equilibrium, the stiffness will be requested using giveCharacteristicMatrix service. The implementation
of the services of the structural element takes into account only material nonlinearity, the geometrical nonlinearity is
not taken into account (regarding geometrical nonlinearity, see NLStructuralElement class). The implementation
of this service is following:

void

StructuralElement :: giveCharacteristicMatrix (FloatMatrix& answer,

CharType mtrx, TimeStep *tStep)

//

// returns characteristic matrix of receiver according to mtrx

//

{

if (mtrx == TangentStiffnessMatrix)

http://www.oofem.org
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this -> computeStiffnessMatrix(answer, TangentStiffness, tStep);

else if (mtrx == SecantStiffnessMatrix)

this -> computeStiffnessMatrix(answer, SecantStiffness, tStep);

else if (mtrx == MassMatrix)

this -> computeMassMatrix(answer, tStep);

else if

....

}

The first parameter is the matrix object to be computed, the mtrx parameter determines the type of contribution and
the last parameter, time step, represents time. The element stiffness matrix can be evaluated using

K =

∫
V

BTDB dV,

where B is the so-called geometrical matrix, containing derivatives of shape functions and D is the material stiffness
matrix. If D is symmetric (which is usually the case) then element stiffness is symmetric, too. The numerical
integration is used to evaluate this integral. For numerical integration, the IntegrationRule class is used. The
integration rules for a specific element are created during element initialization and are stored in integrationRulesArray
attribute, inherited from the Element class. In order to implement the stiffness evaluation, the methods for computing
geometrical matrix and material stiffness matrix are declared (as virtual), but not implemented. They have to be
implemented by specific elements, because they “know” their interpolation and the corresponding material mode. The
implementation of computeStiffnessMatrix is following

void

StructuralElement :: computeStiffnessMatrix (FloatMatrix& answer,

MatResponseMode rMode, TimeStep* tStep)

// Computes numerically the stiffness matrix of the receiver.

{

int j;

double dV ;

FloatMatrix d, bj, dbj;

GaussPoint *gp ;

IntegrationRule* iRule;

// give reference to integration rule

iRule = integrationRulesArray[giveDefaultIntegrationRule()];

// loop over integration points

for (j=0 ; j < iRule->getNumberOfIntegrationPoints() ; j++) {

gp = iRule->getIntegrationPoint(j) ;

// compute geometrical matrix of particular element

this -> computeBmatrixAt(gp, bj) ;

//compute material stiffness

this -> computeConstitutiveMatrixAt(d, rMode, gp, tStep);

// compute jacobian

dV = this -> computeVolumeAround(gp) ;

// evaluate stiffness

dbj.beProductOf (d, bj) ;

answer.plusProductSymmUpper(bj,dbj,dV) ;



4 MATERIAL — ELEMENT FRAME 41

}

answer.symmetrized() ;

// transform into global coordinate system if necessary

if (this->updateRotationMatrix())

answer.rotatedWith(*this->rotationMatrix) ;

return ;

}

Inside the integration loop, only the upper half of the element stiffness is computed in element local coordinate system.
Then, the lower part of the stiffness is initialized from the upper part (answer.symmetrized()) and transformation
from element local coordinate system to global coordinate system is done. The transformation matrix is cached in the
rotationMatrix attribute declared in the StructuraleElement class. The updateRotationMatrix service updates this
matrix (if necessary) and returns pointer to this matrix. The zero value indicates that no transformation is necessary.
The other element contributions can be computed using similar procedures. In general, different integration rules
can be used for evaluation of different element contributions. For example, the support for the reduced integration
of some terms of the stiffness matrix can be implemented - see the implementation of computeStiffnessMatrix in
“structuralelement.C”.
The element strain and stress vectors at a given integration point are computed using computeStrainVector and
computeStressVector services. The element strain vector can be evaluated using ε = Bu, where B is the geometrical
matrix and u is element local displacement vector. The stress evaluation is rather simple, since the stress evaluation
from a given strain increment and actual state (kept within the integration point) is done at the cross section description
level (integration over cross section volume) and material model level (stress evaluation).

void

StructuralElement :: computeStrainVector (FloatArray& answer,

GaussPoint* gp, TimeStep* stepN)

// Computes the vector containing the strains

// at the Gauss point gp of the receiver,

// at time step stepN. The nature of these strains depends

// on the element’s type.

{

FloatMatrix b;

FloatArray u ;

this -> computeBmatrixAt(gp, b) ;

// compute vector of element’s unknowns

this -> computeVectorOf(DisplacementVector,

UnknownMode_Total,stepN,u) ;

// transform global unknowns into element local c.s.

if (this->updateRotationMatrix())

u.rotatedWith(this->rotationMatrix,’n’) ;

answer.beProductOf (b, u) ;

return ;

}

void

StructuralElement :: computeStressVector (FloatArray& answer,

GaussPoint* gp, TimeStep* stepN)
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// Computes the vector containing the stresses

// at the Gauss point gp of the receiver, at time step stepN.

// The nature of these stresses depends on the element’s type.

{

FloatArray Epsilon ;

StructuralCrossSection* cs = (StructuralCrossSection*)

this->giveCrossSection();

Material *mat = this->giveMaterial();

this->computeStrainVector (Epsilon, gp,stepN) ;

// ask cross section model for real stresses

// for given strain increment

cs -> giveRealStresses (answer, ReducedForm, gp, Epsilon, stepN);

return ;

}

The StructuralElement class overloads also services for context storing/restoring, calling corresponding services for
all integration rules (and thus on all integration points belonging to an element).
For further reference see OOFEM library reference manualand files “structuralelement.h” and “structuralelement.C”.

4.2.2 Isoparametric Truss 2d element

class Truss2d : public StructuralElement

{

/*

This class implements a two-node truss bar element

for two-dimensional analysis.

A truss bar element is characterized by its ’length’

and its ’pitch’. The pitch is the angle in radians

between the X-axis anf the axis of the element

(oriented node1 to node2).

*/

protected :

double length ;

double pitch ;

public :

Truss2d (int,Domain*) ; // constructor

~Truss2d () {} // destructor

// mass matrix coputations

void computeLumpedMassMatrix (FloatMatrix& answer,

TimeStep* tStep) ;

// general mass service overloaded

void computeMassMatrix (FloatMatrix& answer, TimeStep* tStep)

{computeLumpedMassMatrix(answer, tStep);}

http://www.oofem.org
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// DOF management

virtual int computeNumberOfDofs (EquationID ut) {return 4;}

virtual void giveDofManDofIDMask (int inode, EquationID, IntArray& ) const;

double computeVolumeAround (GaussPoint*) ;

//

// definition & identification

//

char* giveClassName (char* s) const

{ return strcpy(s,"Truss2d") ;}

classType giveClassID () const { return Truss2dClass; }

IRResultType initializeFrom (InputRecord* ir);

protected:

// computes geometrical matrix

void computeBmatrixAt (GaussPoint*, FloatMatrix&,

int=1, int=ALL_STRAINS) ;

// computes interpolation matrix

void computeNmatrixAt (GaussPoint*, FloatMatrix&) ;

// initialize element’s integration rules

void computeGaussPoints () ;

// transformation from global->local c.s.

int computeGtoLRotationMatrix (FloatMatrix&);

double giveLength () ;

double givePitch () ;

} ;

This is a minimal-functionality implementation. It does not include, for example, any support for element loading or
material nonlinearity. The implementation starts with standard constructor and destructor.

Truss2d :: Truss2d (int n, Domain* aDomain) :

StructuralElement (n,aDomain)

// Constructor.

{

numberOfDofMans = 2 ;

rotationMatrix = NULL ;

length = 0. ;

pitch = 10. ; // a dummy value

}

Next, the services for computing interpolation and geometrical matrices follow. The implementation of the com-
puteNmatrixAt is not necessary for the current purpose, since the mass matrix computation is overloaded and does not
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require this service, but it is added for completeness. The both methods compute response at a given integration point,
which is passed as a parameter. The computeBmatrixAt has two additional parameters which determine the range
of strain components for which response is assembled. This has something to do with support for reduced/selective
integration and is not important in presented simple case.
Recently, the interpolation classes have been added, that can significantly facilitate the element implementation. They
provide shape functions, their derivatives, transformation jacobians out of the box.

void

Truss2d :: computeNmatrixAt (GaussPoint* aGaussPoint,

FloatMatrix& answer)

// Returns the displacement interpolation matrix {N}

// of the receiver, evaluated at aGaussPoint.

{

double ksi,n1,n2 ;

ksi = aGaussPoint -> giveCoordinate(1) ;

n1 = (1. - ksi) * 0.5 ;

n2 = (1. + ksi) * 0.5 ;

answer.resize (2,4);

answer.zero();

answer.at(1,1) = n1 ;

answer.at(1,3) = n2 ;

answer.at(2,2) = n1 ;

answer.at(2,4) = n2 ;

return ;

}

void

Truss2d :: computeBmatrixAt (GaussPoint* aGaussPoint,

FloatMatrix& answer, int li, int ui)

//

// Returns linear part of geometrical

// equations of the receiver at gp.

// Returns the linear part of the B matrix

//

{

double coeff,l;

answer.resize(1,4);

l = this->giveLength();

coeff = 1.0/l;

answer.at(1,1) =-coeff;

answer.at(1,2) = 0.0;

answer.at(1,3) = coeff;

answer.at(1,4) = 0.0;
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return;

}

The following two functions compute the basic geometric characteristics of a bar element - its length and pitch, defined
as the angle between global x-axis and the local element x-axis (oriented from node1 to node2).

double Truss2d :: giveLength ()

// Returns the length of the receiver.

{

double dx,dz ;

Node *nodeA,*nodeB ;

if (length == 0.) {

nodeA = this->giveNode(1) ;

nodeB = this->giveNode(2) ;

dx = nodeB->giveCoordinate(1)-nodeA->giveCoordinate(1);

dz = nodeB->giveCoordinate(3)-nodeA->giveCoordinate(3);

length= sqrt(dx*dx + dz*dz) ;}

return length ;

}

double Truss2d :: givePitch ()

// Returns the pitch of the receiver.

{

double xA,xB,zA,zB ;

Node *nodeA,*nodeB ;

if (pitch == 10.) { // 10. : dummy initialization value

nodeA = this -> giveNode(1) ;

nodeB = this -> giveNode(2) ;

xA = nodeA->giveCoordinate(1) ;

xB = nodeB->giveCoordinate(1) ;

zA = nodeA->giveCoordinate(3) ;

zB = nodeB->giveCoordinate(3) ;

pitch = atan2(zB-zA,xB-xA) ;}

return pitch ;

}

When an element is created (by the Domain class), the default constructor is called. To initialize the element,
according to its record in the input database, the initializeFrom is immediately called after element creation. The
element implementation should first call the parent implementation to ensure that attributes declared at parent level
are initialized properly. Then the element has to initialize attributes declared by itself and also to set up its integration
rules. In our example, special method computeGaussPoints is called to initialize integration rules. In this case, only
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one integration rule is created. It is of type GaussIntegrationRule, indicating that the Gaussian integration is
used. Once integration rule is created, its integration points are created to represent line integral, with 1 integration
point. Integration points will be associated to element under consideration and will have 1D material mode (which
determines the type of material model response).

IRResultType

Truss2d :: initializeFrom (InputRecord* ir)

{

this->NLStructuralElement :: initializeFrom (ir);

this -> computeGaussPoints();

return IRRT_OK;

}

void Truss2d :: computeGaussPoints ()

// Sets up the array of Gauss Points of the receiver.

{

numberOfIntegrationRules = 1 ;

integrationRulesArray = new IntegrationRule*;

integrationRulesArray[0] = new GaussIntegrationRule (1,domain, 1, 2);

integrationRulesArray[0]->

setUpIntegrationPoints (_Line, 1, this, _1dMat);

}

double Truss2d :: computeVolumeAround (GaussPoint* aGaussPoint)

// Returns the volume corresponding to given integration point.

{

double weight = aGaussPoint -> giveWeight() ;

return 0.5 * this->giveLength() * weight *

this->giveCrossSection()->give(’A’);

}

void

Truss2d :: computeLumpedMassMatrix (FloatMatrix& answer, TimeStep* tStep)

// Returns the lumped mass matrix of the receiver. This expression is

// valid in both local and global axes.

{

Material* mat ;

double halfMass ;

mat = this -> giveMaterial() ;

halfMass = mat->give(’d’) *

this->giveCrossSection()->give(’A’) *

this->giveLength() / 2.;

answer.resize (4,4) ; answer.zero();

answer . at(1,1) = halfMass ;

answer . at(2,2) = halfMass ;

answer . at(3,3) = halfMass ;
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answer . at(4,4) = halfMass ;

if (this->updateRotationMatrix())

answer.rotatedWith(*this->rotationMatrix) ;

return ;

}

The following service computes the part of the element transformation matrix, corresponding to transformation be-
tween global and element local coordinate systems. This method is called from the general updateRotationMatrix
service, implemented at the StructuralElement level, which computes the element transformation matrix, taking
into account further transformations (nodal coordinate system, for example). The default implementation of updateRo-
tationMatrix computes the element transformation matrix only once and stores it in rotationMatrix attribute. Since
this service is virtual, particular elements can overload this service to take into account continuously changing local
coordinate system (corotational elements in nonlinear analysis).

int

Truss2d :: computeGtoLRotationMatrix (FloatMatrix& rotationMatrix)

// computes the rotation matrix of the receiver.

// r(local) = T * r(global)

{

double sine,cosine ;

sine = sin (this->givePitch()) ;

cosine = cos (pitch) ;

rotationMatrix.resize(4,4);

rotationMatrix . at(1,1) = cosine ;

rotationMatrix . at(1,2) = sine ;

rotationMatrix . at(2,1) = -sine ;

rotationMatrix . at(2,2) = cosine ;

rotationMatrix . at(3,3) = cosine ;

rotationMatrix . at(3,4) = sine ;

rotationMatrix . at(4,3) = -sine ;

rotationMatrix . at(4,4) = cosine ;

return 1 ;

}

void

Truss2d :: giveDofManDofIDMask (int inode, EquationID, IntArray& answer) const {

// returns DofId mask array for inode element node.

// DofId mask array determines the dof ordering requsted from node.

// DofId mask array contains the DofID constants (defined in cltypes.h)

// describing physical meaning of particular DOFs.

//IntArray* answer = new IntArray (2);

answer.resize (2);

answer.at(1) = D_u;

answer.at(2) = D_w;
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return ;

}

4.3 Material model interface

The base class for all material models is the class Material, derived from the FEMComponent. It declares analysis
independent part of the material interface. The analysis specific part of the interface should be added by derived
classes, which represent the base classes for specific problem. The typical example is the StructuralMaterial class
which declares all the services necessary for the structural analysis. Services declared or implemented at Material
level include

• Material status related services. The material model has to be able to create instance of corresponding material
status, where the history variables are stored. This is done by invoking CreateStatus. The status corresponding
to a given integration point can be requested using the giveStatus service.

• Services for integration point update and initialization. There are generally two sets of history variables kept
in corresponding material statuses for each integration point. One set is referring to previous equilibrated
state, the second one to the actual state during the solution (more precisely to the achieved local-equilibrium
state), which may not correspond to the global equilibrium state. The methods are provided to update the
actual state as equilibrated (updateYourself service) and for initialization of actual state to previous equilibrium
(initTempStatus). The implementation of these services simply extract the corresponding status of a given
integration point and calls the corresponding service of material status.

• Services for testing the material model capabilities (testMaterialExtension, hasMaterialModeCapability, and has-
NonLinearBehaviour).

• Services for requesting internal variables and properties.

4.4 Analysis specific material model classes

The direct derived classes of the Material class are supposed to declare the analysis specific part of the material
model interface, which is required (and assumed) by the corresponding element class (StructuralElement) and cross
section class (StructuralCrossSection).
To store all necessary history variables of the material model, so called status concept is adopted. The material
status can be thought as container of all necessary history variables. Usually two kinds of these variables are stored.
The temporary ones refer to the actual state of an integration point, but do not necessary correspond to the global
equilibrium. These are changing during global equilibrium search iteration. The non-temporary variables are related
to the previously converged state. For each material model, the corresponding status has to be defined, and the
unique instance for each integration point has to be created and associated with it. The integration point provides
the services for accessing corresponding status. All material statuses, related to particular material models, have
to be derived from the base MaterialStatus class. This class declares the basic status interface. The two most
important services are: initTempStatus intended to initialize the temporary internal variables according to variables
related to previously reached equilibrium state and updateYourself designed to update the equilibrium-like history
variables according to temporary variables, when the new global equilibrium has been reached. The derived classes
should also define methods for accessing the corresponding history variables.
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4.4.1 Structural Material class - Example

The structural (or mechanical) constitutive model should generally support several so-called material models, cor-
responding to various modeling assumptions (plane-stress, plane-strain, or 1D-behavior, for example). The concept
of multiple material modes is generally supported by Material, which provides the services for testing the model
capabilities. It is generally assumed, that results obtained from constitutive model services are formed according to
material mode. This mode is attribute of each integration point, which is compulsory parameter of all material ser-
vices. For computational convenience, the so-called full and reduced formats of stress/strains vectors are introduced,
corresponding to material modes. The full format includes all components, even if they are zero due to stress/strain
mode nature. In the reduced format, only generally nonzero components are stored. (Full format should be used only
if absolutely necessary, to avoid wasting of space. For example, it is used by output routines to print results in general
form). Methods for converting vectors between full and reduced format are provided. If possible, all computations
should be performed in reduced space.
The convention used to construct reduced strain/stress vectors is generally as follows. If in a particular mode a
particular stress component is zero, the corresponding strain is not computed and not stored in reduced vector, and in
full vector there is zero value on corresponding position. On the other hand, if zero strain component is imposed, then
this condition must be taken into account in geometrical relations (at element level), and corresponding components
are included in stress/strain reduced vectors.
Generally, the following major tasks are declared by StructuralMaterial or inherited from Material class:

• Computing the real stress vector (tensor) at an integration point for a given strain increment and updating
its temporary state corresponding to the local equilibrium, but not necessarily to the global equilibrium (see
giveRealStressVector). The parameters include the total strain vector and the corresponding integration point.
The total strain is defined as strain computed directly from the displacement field at a given time. The stress
independent parts (temperature, eigen strains) should be subtracted and the corresponding load-history variables
(stored in the corresponding status) can be used. The temporary history variables in the status should be
updated according to the newly reached state. The temporary history variables are moved into equilibrium
history variables just after the global structure equilibrium has been reached by the iteration process.

• Updating the integration point state (final state), when the global equilibrium has been reached.

• Returning material stiffness and/or flexibility matrices for a given material mode. The general methods com-
puting the response for the specific material mode are provided, based on converting 3D stiffness or compliance
matrix to that corresponding to the specific material mode. But, if it is possible to compute stiffness or compli-
ance matrix directly for the specific mode, then these general methods should be overloaded.

• Storing/restoring integration point state to/from a stream.

• Requesting internal variables, their types and properties (giveIPValue, giveIPValueSize, giveIPValueType, and
giveIntVarCompFullIndx services).

• Returning material properties.

Structural material services should not be called directly by elements. Instead, the elements should pass their re-
quests to the corresponding cross section model, that performs all necessary integration over its volume and invokes
corresponding material model services.
The StructuralMaterial class comes with definition of associated material status - StructuralMaterialStatus.
This is only an abstract class. For every instance of StructuralMaterial class there should be a specialized derived
class, which maintains all history variables. It only adds attributes common to all “structural analysis” material models
- the strain and stress vectors (both the temporary-like, corresponding to the local equilibrium and non-temporary
ones, corresponding to the global equilibrium). The corresponding services for accessing, setting, initializing, and
updating these attributes are provided.
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4.4.2 Isotropic Damage Model

In this section, the implementation of ann isotropic damage model will be described. To cover the various models
based on isotropic damage concept, a base class IsotropicDamageMaterial is defined first, declaring the necessary
services and providing the implementation of them, which are general. The derived classes then only implement a
particular damage-evolution law.
The isotropic damage models are based on the simplifying assumption that the stiffness degradation is isotropic, i.e.,
stiffness moduli corresponding to different directions decrease proportionally and independently of direction of loading.
Consequently, the damaged stiffness matrix is expressed as

D = (1 − ω)De,

where De is elastic stiffness matrix of the undamaged material and ω is the damage parameter. Initially, ω is set to
zero, representing the virgin undamaged material, and the response is linear-elastic. As the material undergoes the
deformation, the initiation and propagation of microdefects decreases the stiffness, which is represented by the growth
of the damage parameter ω. For ω = 1, the stiffness completely disappears.
In the present context, the D matrix represents the secant stiffness that relates the total strain to the total stress

σ = Dε = (1 − ω)Deε.

Similarly to the theory of plasticity, a loading function f is introduced. In the damage theory, it is natural to work
in the strain space and therefore the loading function is depending on the strain and on an additional parameter κ,
describing the evolution of the damage. Physically, κ is a scalar measure of the largest strain level ever reached. The
loading function usually has the form

f(ε, κ) = ε̃(ε) − κ,

where ε̃ is the equivalent strain, i.e., the scalar measure of the strain level. Damage can grow only if current state
reaches the boundary of elastic domain (f = 0). This is expressed by the following loading/unloading conditions

f ≤ 0, κ̇ ≥ 0, κ̇f = 0.

It remains to link the variable κ to the damage parameter ω. As both κ and ω grow monotonically, it is convenient
to postulate an explicit evolution law

ω = g(κ).

The important advantage of this explicit formulation is that the stress corresponding to the given strain can be
evaluated directly, without the need to solve the nonlinear system of equations. For the given strain, the corresponding
stress is computed simply by evaluating the current equivalent strain, updating the maximum previously reached
equivalent strain value κ and the damage parameter and reducing the effective stress according to σ = (1 − ω)Deε.
This general framework for computing stresses and stiffness matrix is common for all material models of this type.
Therefore, it is natural to introduce the base class for all isotropic-based damage models which provides the general
implementation for the stress and stiffness matrix evaluation algorithms. The particular models then only provide
their equivalent strain and damage evolution law definitions. The base class only declares the virtual services for
computing equivalent strain and corresponding damage. The implementation of common services uses these virtual
functions, but they are only declared at IsotropicDamageMaterial class level and have to be implemented by the
derived classes.
Together with the material model, the corresponding status has to be defined, containing all necessary history vari-
ables. For the isotropic-based damage models, the only history variable is the value of the largest strain level ever
reached (κ). In addition, the corresponding damage level ω will be stored. This is not necessary because damage
can be always computed from corresponding κ. The IsotropicDamageMaterialStatus class is derived from Struc-
turalMaterialStatus class. The base class represents the base material status class for all structural statuses. At
StructuralMaterialStatus level, the attributes common to all “structural analysis” material models - the strain
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and stress vectors (both the temporary and non-temporary) are introduced. The corresponding services for access-
ing, setting, initializing, and updating these attributes are provided. Therefore, only the κ and ω parameters are
introduced (both the temporary and non-temporary). The corresponding services for manipulating these attributes
are added and services for context initialization, update, and store/restore operations are overloaded, to handle the
history parameters properly.

class IsotropicDamageMaterialStatus : public StructuralMaterialStatus

{

protected:

/// scalar measure of the largest strain level ever reached in material

double kappa;

/// non-equilibrated scalar measure of the largest strain level

double tempKappa;

/// damage level of material

double damage;

/// non-equilibrated damage level of material

double tempDamage;

public:

/// Constructor

IsotropicDamageMaterialStatus (int n, Domain*d, GaussPoint* g) ;

/// Destructor

~IsotropicDamageMaterialStatus ();

/// Prints the receiver state to stream

void printOutputAt (FILE *file, TimeStep* tStep) ;

/// Returns the last equilibrated scalar measure

/// of the largest strain level

double giveKappa () {return kappa;}

/// Returns the temp. scalar measure of the

/// largest strain level

double giveTempKappa () {return tempKappa;}

/// Sets the temp scalar measure of the largest

/// strain level to given value

void setTempKappa (double newKappa) { tempKappa = newKappa;}

/// Returns the last equilibrated damage level

double giveDamage () {return damage;}

/// Returns the temp. damage level

double giveTempDamage () {return tempDamage;}

/// Sets the temp damage level to given value

void setTempDamage (double newDamage) { tempDamage = newDamage;}

// definition

char* giveClassName (char* s) const

{ return strcpy(s,"IsotropicDamageMaterialModelStatus") ;}

classType giveClassID () const

{ return IsotropicDamageMaterialStatusClass; }

/**

Initializes the temporary internal variables,
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describing the current state according to

previously reached equilibrium internal variables.

*/

virtual void initTempStatus ();

/**

Update equilibrium history variables

according to temp-variables.

Invoked, after new equilibrium state has been reached.

*/

virtual void updateYourself(TimeStep*);

// saves current context(state) into stream

/**

Stores context of receiver into given stream.

Only non-temp internal history variables are stored.

@param stream stream where to write data

@param obj pointer to integration point, which invokes this method

@return nonzero if o.k.

*/

contextIOResultType saveContext (FILE* stream, void *obj = NULL);

/**

Restores context of receiver from given stream.

@param stream stream where to read data

@param obj pointer to integration point, which invokes this method

@return nonzero if o.k.

*/

contextIOResultType restoreContext(FILE* stream, void *obj = NULL);

};

The base IsotropicDamageMaterial class is derived from the StructuralMaterial class.

/**

Base class representing general isotropic damage model.

It is based on isotropic damage concept,

assuming that damage evolution law

is postulated in explicit form,

relating damage parameter (omega) to scalar measure

of the largest strain level ever reached in material (kappa).

*/

class IsotropicDamageMaterial : public StructuralMaterial

{

protected :

/// Coefficient of thermal dilatation

double tempDillatCoeff;

/// Reference to bulk (undamaged) material

LinearElasticMaterial *linearElasticMaterial;

/**

variable controling type of loading/unloading law,

default set to idm_strainLevel
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defines the two possibilities:

- idm_strainLevelCR the unloaing takes place,

when strain level is smaller than the

largest level ever reached;

- idm_damageLevelCR the unloaing takes place,

when damage level is smaller than the

largest damage ever reached;

*/

enum loaUnloCriterium {

idm_strainLevelCR,

idm_damageLevelCR

} llcriteria;

public :

/// Constructor

IsotropicDamageMaterial (int n,Domain* d) ;

/// Destructor

~IsotropicDamageMaterial () ;

/// Returns nonzero indicating that receiver is nonlinear

int hasNonLinearBehaviour () { return 1 ;}

/**

Tests, if material supports material mode.

@param mode required material mode

@return nonzero if supported, zero otherwise

*/

int hasMaterialModeCapability (MaterialMode mode);

char* giveClassName (char* s) const

{ return strcpy(s,"IsotropicDamageMaterial") ;}

classType giveClassID () const

{ return IsotropicDamageMaterialClass;}

/// Returns reference to undamaged (bulk) material

LinearElasticMaterial* giveLinearElasticMaterial ()

{return linearElasticMaterial;}

/**

Computes full 3d material stiffness matrix at given

integration point, time, respecting load history

in integration point.

@param answer computed results

@param form material response form

@param mode material response mode

@param gp integration point

@param atTime time step (most models are able to

respond only when atTime is current time step)

*/

virtual void give3dMaterialStiffnessMatrix (FloatMatrix& answer,

MatResponseForm form,

MatResponseMode mode,
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GaussPoint* gp,

TimeStep* atTime);

/**

Computes the real stress vector for given strain

increment and integration point.

Temp vars are updated accordingly

@param answer contains result

@param form material response form

@param gp integration point

@param reducedStrain strain vector in reduced form

@param tStep current time step (most models are able to

respond only when tStep is current time step)

*/

void giveRealStressVector (FloatArray& answer, MatResponseForm form,

GaussPoint* gp, const FloatArray &reducedStrain,

TimeStep* tStep);

/**

Returns the integration point corresponding

value in Reduced form.

@param answer contain corresponding ip value,

zero sized if not available

@param aGaussPoint integration point

@param type determines the type of internal variable

@returns nonzero if ok, zero if var not supported

*/

virtual int giveIPValue (FloatArray& answer,

GaussPoint* aGaussPoint,

InternalStateType type,

TimeStep* atTime) ;

/**

Returns the mask of reduced indexes of

Internal Variable component .

@param answer mask of Full VectorSize, with components

being the indexes to reduced form vectors.

@param type determines the internal variable requested

@returns nonzero if ok or error is generated for unknown mat mode.

*/

virtual int giveIntVarCompFullIndx (IntArray& answer,

InternalStateType type,

MaterialMode mmode);

/**

Returns the type of internal variable (scalar, vector, ...)

@param type determines the type of internal variable

@returns type of internal variable

*/

virtual

InternalStateValueType giveIPValueType (InternalStateType type);
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/**

Returns the corresponding integration point

value size in Reduced form.

@param type determines the type of internal variable

@returns var size, zero if var not supported

*/

virtual int giveIPValueSize (InternalStateType type,

GaussPoint* aGaussPoint) ;

/**

Returns a vector of coefficients of thermal dilatation in direction

of each material principal (local) axis.

@param answer vector of thermal dilatation coefficients

@param gp integration point

@param tStep time step (most models are able to

respond only when atTime is current time step)

*/

virtual void giveThermalDilatationVector (FloatArray& answer,

GaussPoint*, TimeStep*) ;

/**

Computes the equivalent strain measure from

given strain vector (full form).

@param kappa return param, comtaining the

corresponding equivalent strain

@param strain total strain vector in full form

@param gp integration point

@param atTime timestep

*/

virtual void computeEquivalentStrain (double& kappa,

const FloatArray& strain,

GaussPoint* gp,

TimeStep* atTime) = 0;

/**

computes the value of damage parameter omega,

based on given value of equivalent strain

@param omega contains result

@param kappa equivalent strain measure

*/

virtual void computeDamageParam (double& omega, double kappa,

const FloatArray& strain,

GaussPoint* gp) =0;

/**

Instanciates the receiver from input record

*/

IRResultType initializeFrom (InputRecord* ir);

protected:

/**
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Abstract service allowing to perfom some

initialization, when damage first appear

@param kappa scalar measure of strain level

@param totalStrainVector current total strain vector

@param gp integration point

*/

virtual void initDamaged (double kappa,

FloatArray& totalStrainVector,

GaussPoint* gp) {}

/// Creates corresponding material status

MaterialStatus* CreateStatus (GaussPoint *gp)

{return new IsotropicDamageMaterialStatus (1,domain,gp);}

// Overloaded to use specialized versions of these

// services possibly implemented by linearElastic member

/**

Method for computing plane stress stifness matrix of receiver.

Default implementation overloaded to use direct implementation of

corresponding service at bulk material model level.

@param answer stifness matrix

@param form material response form

@param mode material response mode

@param gp integration point, which load history is used

@param atTime time step (most models are able to

respond only when atTime is current time step)

*/

void givePlaneStressStiffMtrx (FloatMatrix& answer,

MatResponseForm form,

MatResponseMode,

GaussPoint* gp,

TimeStep* atTime);

/**

Method for computing plane strain stifness matrix of receiver.

Default implementation overloaded to use direct implementation of

corresponding service at bulk material model level.

@param answer stifness matrix

@param form material response form

@param mode material response mode

@param gp integration point, which load history is used

@param atTime time step (most models are able to

respond only when atTime is current time step)

*/

void givePlaneStrainStiffMtrx (FloatMatrix& answer,

MatResponseForm form,

MatResponseMode,

GaussPoint* gp,

TimeStep* atTime);

/**
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Method for computing 1d stifness matrix of receiver.

Default implementation overloaded to use direct implementation of

corresponding service at bulk material model level.

@param answer stifness matrix

@param form material response form

@param mode material response mode

@param gp integration point, which load history is used

@param atTime time step (most models are able to

respond only when atTime is current time step)

*/

void give1dStressStiffMtrx (FloatMatrix& answer,

MatResponseForm form,

MatResponseMode,

GaussPoint* gp,

TimeStep* atTime);

} ;

#include "isodamagemodel.h"

#include "gausspnt.h"

#include "flotmtrx.h"

#include "flotarry.h"

#include "structuralcrosssection.h"

#include "mathfem.h"

IsotropicDamageMaterial :: IsotropicDamageMaterial (int n, Domain *d)

: StructuralMaterial (n,d)

//

// constructor

//

{

linearElasticMaterial = NULL;

llcriteria = idm_strainLevelCR;

}

IsotropicDamageMaterial :: ~IsotropicDamageMaterial ()

//

// destructor

//

{

delete linearElasticMaterial;

}

int

IsotropicDamageMaterial :: hasMaterialModeCapability (MaterialMode mode)

//

// returns whether receiver supports given mode

//

{

if ((mode == _3dMat) || (mode == _PlaneStress) ||

(mode == _PlaneStrain) || (mode == _1dMat)) return 1;

return 0;
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}

Next, the implementation for core services is presented. They compute material stiffness matrices for various material
modes and compute the stress vector. The later service computes the real stress corresponding to the previous history
and the given strain vector. It computes a new locally consistent (equilibrated) state, which is stored in temporary
variables of the corresponding status (attribute of the integration point).

void

IsotropicDamageMaterial :: give3dMaterialStiffnessMatrix (FloatMatrix& answer,

MatResponseForm form,

MatResponseMode mode,

GaussPoint* gp,

TimeStep* atTime)

//

// computes full constitutive matrix for case of gp stress-strain state.

//

{

IsotropicDamageMaterialStatus *status =

(IsotropicDamageMaterialStatus*) this -> giveStatus (gp);

double om = status->giveTempDamage();

om = min (om, 0.999999);

this->giveLinearElasticMaterial()->

give3dMaterialStiffnessMatrix (answer, form, mode, gp, atTime);

answer.times (1.0-om);

return ;

}

void

IsotropicDamageMaterial :: giveRealStressVector (FloatArray& answer,

MatResponseForm form,

GaussPoint* gp,

const FloatArray& totalStrain,

TimeStep* atTime)

//

// returns real stress vector in 3d stress space of receiver according to

// previous load history and given strain.

// After the new local point equilibrium is reached all the

// temp history variables are updated to new local equilibrium state.

//

//

{

IsotropicDamageMaterialStatus *status =

(IsotropicDamageMaterialStatus*) this -> giveStatus (gp);

LinearElasticMaterial* lmat = this->giveLinearElasticMaterial();

FloatArray strainVector, reducedTotalStrainVector;

FloatMatrix de;

double f, equivStrain, tempKappa, omega;

this->initGpForNewStep(gp);
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// substract stress independent part

// note: eigenStrains (tepmerature) is not contained in mechanical

// strain stored in gp therefore it is necessary to substract

// always the total eigen strain value

this->giveStressDependentPartOfStrainVector(reducedTotalStrainVector,

gp, totalStrain,atTime, TotalMode);

// compute equivalent strain

this->computeEquivalentStrain (equivStrain, reducedTotalStrainVector, gp, atTime);

if (llcriteria == idm_strainLevelCR) {

// compute value of loading function if strainLevel crit apply

f = equivStrain - status->giveKappa();

if (f <= 0.0) {

// damage do not grow

tempKappa = status->giveKappa();

omega = status->giveDamage();

} else {

// damage grow

tempKappa = equivStrain;

this->initDamaged (tempKappa, reducedTotalStrainVector, gp);

// evaluate damage parameter

this->computeDamageParam (omega, tempKappa, reducedTotalStrainVector, gp);

}

} else if (llcriteria == idm_damageLevelCR) {

// evaluate damage parameter first

tempKappa = equivStrain;

this->initDamaged (tempKappa, reducedTotalStrainVector, gp);

this->computeDamageParam (omega, tempKappa, reducedTotalStrainVector, gp);

if (omega < status->giveDamage()) {

// unloading takes place

omega = status->giveDamage();

}

} else _error ("giveRealStressVector: unsupported loading/uloading criteria");

lmat->giveCharacteristicMatrix(de, ReducedForm, SecantStiffness, gp, atTime);

de.times(1.0-omega);

answer.beProductOf (de, reducedTotalStrainVector);

// update gp

status-> letTempStrainVectorBe (totalStrain);

status-> letTempStressVectorBe (answer);

status-> setTempKappa (tempKappa);

status-> setTempDamage(omega);

return ;

}

/*
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The following routines are not necessary, since the base

StructuralMaterial class implements general algorithm how

to derive the stiffness and compliance matrices for

specific modes from full 3d stiffness/compliance.

However, these general services are not efficient, since

they require matrix inversion. The better and efficient way is

to overload these service and provide efficient implementation,

if available.

*/

void

IsotropicDamageMaterial::givePlaneStressStiffMtrx (FloatMatrix& answer,

MatResponseForm form,

MatResponseMode mode,

GaussPoint* gp,

TimeStep* atTime)

{

IsotropicDamageMaterialStatus *status =

(IsotropicDamageMaterialStatus*) this -> giveStatus (gp);

double om = status->giveTempDamage();

om = min (om, 0.999999);

this->giveLinearElasticMaterial()->

giveCharacteristicMatrix (answer, form, mode, gp, atTime);

answer.times (1.0-om);

return ;

}

void

IsotropicDamageMaterial::givePlaneStrainStiffMtrx (FloatMatrix& answer,

MatResponseForm form,

MatResponseMode mode,

GaussPoint* gp,

TimeStep* atTime)

{

IsotropicDamageMaterialStatus *status =

(IsotropicDamageMaterialStatus*) this -> giveStatus (gp);

double om = status->giveTempDamage();

om = min (om, 0.999999);

this->giveLinearElasticMaterial()->

giveCharacteristicMatrix (answer, form, mode, gp, atTime);

answer.times (1.0-om);

return ;

}

void

IsotropicDamageMaterial::give1dStressStiffMtrx (FloatMatrix& answer,

MatResponseForm form,
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MatResponseMode mode,

GaussPoint* gp,

TimeStep* atTime)

{

IsotropicDamageMaterialStatus *status =

(IsotropicDamageMaterialStatus*) this -> giveStatus (gp);

double om = status->giveTempDamage();

om = min (om, 0.999999);

this->giveLinearElasticMaterial()->

giveCharacteristicMatrix (answer, form, mode, gp, atTime);

answer.times (1.0-om);

return ;

}

int

IsotropicDamageMaterial::giveIPValue (FloatArray& answer,

GaussPoint* aGaussPoint,

InternalStateType type,

TimeStep* atTime)

{

IsotropicDamageMaterialStatus* status =

(IsotropicDamageMaterialStatus*) this -> giveStatus (aGaussPoint);

if (type == IST_DamageTensor) {

answer.resize(1);

answer.at(1) = status->giveDamage();

return 1;

} else if (type == IST_DamageTensorTemp) {

answer.resize(1);

answer.at(1) = status->giveTempDamage();

return 1;

} else if (type == IST_MaxEquivalentStrainLevel) {

answer.resize(1);

answer.at(1) = status->giveKappa ();

return 1;

}else return StructuralMaterial::giveIPValue (answer, aGaussPoint, type, atTime);

}

InternalStateValueType

IsotropicDamageMaterial::giveIPValueType (InternalStateType type)

{

if ((type == IST_DamageTensor)) return ISVT_TENSOR;

else return StructuralMaterial::giveIPValueType (type);

}

int

IsotropicDamageMaterial::giveIntVarCompFullIndx (IntArray& answer,
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InternalStateType type,

MaterialMode mmode)

{

if ((type == IST_DamageTensor)) {

answer.resize (9);

answer.at(1) = 1;

return 1;

} else

return StructuralMaterial::giveIntVarCompFullIndx (answer, type, mmode);

}

int

IsotropicDamageMaterial::giveIPValueSize (InternalStateType type,

GaussPoint* aGaussPoint)

{

if ((type == IST_DamageTensor)) return 1;

else return StructuralMaterial::giveIPValueSize (type, aGaussPoint);

}

void

IsotropicDamageMaterial :: giveThermalDilatationVector (FloatArray& answer,

GaussPoint * gp,

TimeStep* tStep)

//

// returns a FloatArray(6) of initial strain vector

// eps_0 = {exx_0, eyy_0, ezz_0, gyz_0, gxz_0, gxy_0}^T

// caused by unit temperature in direction of

// gp (element) local axes

//

{

answer.resize (6); answer.zero();

answer.at(1) = this->tempDillatCoeff;

answer.at(2) = this->tempDillatCoeff;

answer.at(3) = this->tempDillatCoeff;

return ;

}

IRResultType

IsotropicDamageMaterial :: initializeFrom (InputRecord* ir)

{

const char *__proc = "initializeFrom"; // Required by IR_GIVE_FIELD macro

IRResultType result; // Required by IR_GIVE_FIELD macro

IR_GIVE_FIELD (ir, tempDillatCoeff, IFT_IsotropicDamageMaterial_talpha, "talpha"); // Macro

return StructuralMaterial::initializeFrom (ir);

}

In the last part, the implementation of the IsotropicDamageMaterialStatus class services follows. The init-
TempStatus and updateYourself services are used to initialize temporary history variables according to the previous
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equilibrium state or to update the non-temporary variables, when a new equilibrium is reached. Also, the implemen-
tation of storeContext and restoreContext services is shown. The service printYourself is also overloaded. It allows to
print history variables into output file. Note that all overloaded methods call the corresponding method of the base
class (to ensure that processing corresponding to the base class is performed, to guarantee consistency) and then the
required functionality is added.

IsotropicDamageMaterialStatus::IsotropicDamageMaterialStatus (int n,

Domain* d,

GaussPoint* g)

:StructuralMaterialStatus(n,d,g)

{

kappa = tempKappa = 0.0;

damage = tempDamage = 0.0;

}

IsotropicDamageMaterialStatus::~IsotropicDamageMaterialStatus ()

{}

void

IsotropicDamageMaterialStatus :: printOutputAt (FILE *file, TimeStep* tStep)

{

StructuralMaterialStatus :: printOutputAt (file, tStep);

fprintf (file,"status { ");

if (this->damage > 0.0) {

fprintf (file,"kappa %f, damage %f ",this->kappa, this->damage);

}

fprintf (file,"}\n");

}

void

IsotropicDamageMaterialStatus::initTempStatus ()

{

StructuralMaterialStatus :: initTempStatus();

this->tempKappa = this->kappa;

this->tempDamage= this->damage;

}

void

IsotropicDamageMaterialStatus::updateYourself(TimeStep* atTime)

{

StructuralMaterialStatus::updateYourself(atTime);

this->kappa = this->tempKappa;

this->damage= this->tempDamage;

}

contextIOResultType
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IsotropicDamageMaterialStatus::saveContext (FILE* stream, void *obj)

{

contextIOResultType iores;

// save parent class status

if ((iores = StructuralMaterialStatus :: saveContext (stream, obj))

!= CIO_OK) THROW_CIOERR(iores);

// write a raw data

if (fwrite(&kappa,sizeof(double),1,stream) != 1) THROW_CIOERR(CIO_IOERR);

if (fwrite(&damage,sizeof(double),1,stream)!= 1) THROW_CIOERR(CIO_IOERR);

return CIO_OK;

}

contextIOResultType

IsotropicDamageMaterialStatus::restoreContext(FILE* stream, void *obj)

{

contextIOResultType iores;

// read parent class status

if ((iores = StructuralMaterialStatus :: restoreContext(stream,obj))

!= CIO_OK) THROW_CIOERR(iores);

// read raw data

if (fread (&kappa,sizeof(double),1,stream) != 1) THROW_CIOERR(CIO_IOERR);

if (fread (&damage,sizeof(double),1,stream) != 1) THROW_CIOERR(CIO_IOERR);

return CIO_OK;

}

The above general class provides the general framework. The derived classes have to implement only services computeE-
quivalentStrain and computeDamageParam, which are only related to particular material model under consideration.

5 Dof Managers, DOFs, Boundary and Initial Conditions

5.1 DOFs

Abstract class Dof represents Degree Of Freedom in finite element mesh. DOFs are possesed by DofManagers (i.e,
nodes, element sides or whatever) and one Dof instance belongs to only one DofManager instance. Dof maintain its
physical meaning and reference to related DofManager (reference to DofManager which possess particular DOF). To
describe physical meaning of particular Dof, special enum type ”DofId” has been introduced (see cltypes.h). This type
is more descriptive than UnknownType, which determines physical meaning for unknowns generally (displacement
or temperature). DofId type has to distinguish between DOFs representing displacement, but in different directions,
since only some of those may be required by particular elements.
Dof can be subjected to boundary (BC) or initial (IC) condition. Method for obtaining corresponding DOF unknown
value is provided. If no IC condition has been given, zero value IC is assumed otherwise when needed.
Dof class generally supports changes of static system during computation. This feature generally leads to equation
renumbering. Then because equation number associated to dof may change, it may become extremly complicated
to ask EngngModel for unknown from previous time step (because equation number may have been changed). To
overcome this problem, derived class will implement so called uknown dictionary, which is updated after finishing each
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time step and where unknowns for particular dof are stored. Dof then uses this dictionary for requests for unknowns
instead of asking EngngModel for unknowns. Unknowns in dof dictionary are updated by EngngModel automatically
(if EngngModel supports changes of static system) after finishing time step.
The base class Dof declares many services necessary for DOF handling. Some of them are abstract, they have to be
implemented by derived classes representing “specialised” DOF types. This basic DOF interface includes the following
services

• Services for requesting corresponding unknowns (giveUnknown) and the prescribed boundary values (giveBc-
Value).

• Methods for requesting associated equation number (giveEquationNumber).

• Services for requesting DOF properties (hasBc, hasIc, giveDofID, giveDofIDName, giveUnknownType, isPrima-
ryDof).

• Services for dof output (printOutputAt, printStaticOutputAt, printDynamicOutputAt), update after new equlib-
rium is reached (updateYourself, updateUnknownsDictionary) and services for storing/restoring context (save-
Context, restoreContext).

The derived classes should implement specific types of DOFs. The most common types are provided with OOFEMlim.
Supported are so-called MasterDofs, representing true DOFs with their own equation number, Slave DOFs, represent-
ing single DOF linked to onother single DOF, Rigid Arm Dofs allowing to model rigid arms (single dof linked to one
or more other DOFs). Their brief description follows:

• MasterDof - class representing ”master” degree of freedom. Master is degree of freedom, which has its related
unknown and corresponding equation number. It maintain its equation number.

• SlaveDof - class representing ”slave” degree of freedom. Slave dof is linked to some master dof (link slave-slave
is not allowed). Slaves can be used to implement duplicated joints (by specifying some dof in node as masters
and some as slaves linked to dofs in other node (with same or possibly different coordinates). Slave dof share the
same equation number with master. Almost all operation as request for BC or IC or equation number are simply
forwarded to master. Other functions (which change internal state) like updateYourself, updateUnknownsDic-
tionary, askNewEquationNumber or context storing/restoring functions are empty functions, relying on fact that
same funtion will be called also for master. From this point of wiev, one can see slave dof as link to other dof.

• RigidArmSlaveDof - class representing ”rigid arm slave” degree of freedom. This DOF is linked to some
master DOFs by linear combination (link slave-slave is not allowed) using rigid arm. Implemented using nodal
transformation. The Rigid Arm Slave dof represent DOF, which is directly related to one or more master
DOFs. Therefore the rigid arm slave’s equation number is undefined. Similarly, rigid arm slave cannot have
own boundary or initial conditions - these are entirely detrmined using master boundary or initial conditions.
The transformation for DOFs and load is not ortogonal - the inverse transformation can not be constructed by
transposition. Because of time consuming inversion, methods can generally compute both transformations for
dofs as well as loads. It is important to ensure (on input) that both slave dofManager and master dofManager are
using the same local coordinate system. In future releases, this can be checked using checkConsistency function,
where this check could be performed.

5.2 Dof Managers

The DofManager class is the base class for all dof managers. Dof manager is an abstraction for object possessing
degrees of freedom (DOFs). Dof managers (respectively derived clases, representing nodes or sides) are usually
shared by several elements and are maintained by corresponding domain. The elements keep the logical reference to
corresponding dof managers (they store their numbers, not the physical links). The base class declares the variable
storing total number of DOFs, the dofArray representing the list of DOFs managed by dof manager, and loadArray
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list for storing the applied loadings references. The DofManager declares (and implements some of them) following
services

• DOF management methods. The methods for requesting the total number of DOFs (giveNumberOfDofs), re-
questing particular DOFs (giveDof), assembling location array of code numbers (giveLocationArray and give-
CompleteLocationArray), methods for DOF selection based on their physical meaning (giveDofArray and find-
DofWithDofId), and services for requesting unknowns related to dof manager DOFs (giveUnknownVector and
givePrescribedUnknownVector).

• Transformation functions. The governing equations can be assembled not only in global coordinate system,
but also in user-defined local coordinate system of each dof manager. Following methods introduce necessary
transformation methods, allowing DOFs to be expressed in their own local c.s. or to be dependent on other dofs
on other dofManager (to implement slave or rigid arm nodes etc.). The methods for computing transformation
matrices from global c.s to receiver’s defined coordinate system are declared (computeDofTransformation and
computeLoadTransformation). The requiresTransformation indicates whether dofManager requires the transfor-
mation from global c.s. to dof manager specific coordinate system.

• Load management functions. The two methods are provided for handling applied loading - the service for
computing the load vector of receiver in given time (computeLoadVectorAt) and service providing the list of
applied loads (giveLoadArray).

• Context related services for storing/restoring the receiver state to context (saveContext and restoreContext
services) are implemented.

• Instanciating service initializeFrom.

• Miscelaneous services for receiver printing, identification, etc.

In the OOFEMlib the common specialized dof managers are defined and implemented. Those currently provided are:

• Node class. Class implementing node in finite element mesh. Node manages its positon in space, and if specified,
its local coordinate system in node. If local coordinate system is defined, all equilibrium equations are assembled
in this system and therefore all DOFs and applied boundary and initial conditions apply in this local coordinate
system. By default, global coordinate system is assumed in each node.

• RigidArmNode class. Class implementing node connected to other node (master) using rigid arm in finite
element mesh. Rigid arm node supports not only slave dofs mapped to master but also some dofs can be primary
doofs. The masterDofMask attribute is introduced allowing to distinguish between primary and mapped (slave)
dofs. The primary DOFs can have their own boundary and initial conditions. The introduction of rigid arm
connected nodes allows to avoid wery stiff elements used for modelling the rigid-arm connection. The rigid arm
node maps its dofs to master dofs using simple transformations (small rotations are assumed). Therefore, the
contribution to rigid arm node are localized directly to master related equations. The rigid arm node slave
(mapped dofs can not have its own boundary or initial conditions, they are determined completely from master
dof conditions. The local coordinate system in slave is not supported in current implementation, the global lcs
applies. On the other hand, rigid arm node can be loaded independently of master. The transformation for
DOFs and load is not ortogonal - the inverse transformation can not be constructed by transposition. Because
of time consuming inversion, methods can generally compute both transformations for dofs as well as loads.

• ElementSide class - representing finite element side possesing some DOFs.
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5.3 Boundary Conditions

The library introduces the base abstract class GeneralBoundaryCondition for all boundary conditions (both pri-
mary and secondary). Boundary condition is an aribute of the domain (it belongs to). The other system components
subjected to boundary conditions keep reference to corresponding boundary conditions, like elements, nodes, and Dofs.
The base class only declares itself as a base class of all boundary conditions, and declares only very basic services.
It introduces ’loadTimeFunction’ as an atrribute of each boundary condition. ’loadTimeFunction’ represent time
variation, its value is dependent on time step. The value (or the components) of a boundary condition (load) will
be the product of its value by the value of the associated load time function at given time step. The meaning of
boundary condition components is dependent on particular boundary condition type, and should be defined in derived
classes documentation. This base class introduces also two general services for requesting boundary condition physical
meaning and boundary condition geometrical character (pointwise, acting on element body or edge and so on).
Derived classes should represent the base classes for particular boundary condition type (like force load, or boundary
condition prescribed directlly on some dof) and should declare the basic common interface. For example, the Load is
derived from GeneralBoundaryCondition and represent base class for all load types. The following derived classes
are provided by OOFEMlib

• Load class - base abstract class for all loads. Declares the attribute componentArray to store load components
and method for evaluating the component values array at given time (component array multiplied with load
time function value) is provided.

• NodalLoad - implementation of a concentrated load (force, moment,...) that acts directly on a dof manager
(node or element side, if it has associated DOFs). This load could not be applied on an element. A nodal load
is usually attribute of one or more nodes or element sides.

• BoundaryLoad - abstract base class representing a boundary load (force, momentum, ...) that acts directly on
a boundary of some finite element (on element side, face, ...). Boundary load is usually attribute of one or more
finite elements. This base class only declares the common services to all derived classes. Derived classes must
implement abstract services and possibly may customize existing. Boundary load is represented by its geometry
(determined by its type - linear, quadratic load) and values (it is assumed, that user will supply all necessary
values for each dof).

The load can generally be specified in global space or can be related to local entity space (related to edge,
surface). If load is specified in global space then its values are evalueated at points, which is characterized
by global coordinates. If load is specified in entity space, then point is characterized by entity isoparametric
coordinates.

Methods for evaluation of load component values in any point on element boundary (on side, face, ...) are
provided (this point is determined using global coordinates). The other possibility (faster, but less general) is to
specify the the point using isoparametric coordinates - but this is not supported. It is generally assumed, that
derived classes will approximate somehow their values based on user specified data (on side nodes for example)
and load approximation type. The similar scheme borrowed from FE appriximation is used, values computed
at required point are computed as a product of approximation matrix (matrix of approximation functions) with
”vertex” values, which has to be specified on input by user. Elements can request the order of load approximation
(for setting up the appropriate integration rule order) and the array of component values (for each dof) at specific
integration point on the boundary.

For some elements it may be better to obtain ”vertex values” of boundary load to compute load vector directly
using exact formulae. Elements then can ask for values at nodal points and obtain cooresponding ”vertex values”.
Meaning of these values is load type dependent, see derived classes documentation for details.

Elements must take care, on which boundary the load acts on (side number, ...). Boundary load class also
introduces load related cooordinate system indicator. Load can be generally specified in global coordinate
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system or in entity dependent local coordinate system. The entity dependent coordinate system is defined by
particular element.

To sumarize, the services provided include computing component array evaluated at specific point on boundary,
returning component array of ”vertex values”, returning load appriximation order (usefull when numerical in-
tegrations of load vector over element boundaries are used), returning type of coordinate system, in which load
applies (global c.s., or entity related c.s.).

• BodyLoad - Class representing base class for all element body load, acting over whole element volume (e.g.,
the dead weight).

• BoundaryCondition - class implementing boundary condition on DOF (primary boundary condition). This
boundary condition is usually attribute of one or more degrees of freedom (DOF). The type of unknown (physical
meaning) is fully determined by corresponding DOF, to which given BC is associated. Boundary condition
can change its value in time using its inheritted loadTimeFunction attribute. It can also switch itself on or
off depending on nonzero value of intorduced isImposedTimeFunction load time function. Please note, that
previous option must be supported by particular engineering model (because equation renumbering is necessary,
and for incremental solution schemes DOFs unknown dictionaries must be used). See particular engineering
model documantation for details.

• InitialCondition - class implementing general initial condition. Initial condition is usually attribute of one or
more degrees of freedom (DOFs). One particular DOF (with its physical meaning - for example displacement) can
have associated only single initial condition. Initial condition trefore must represent several initial conditions for
particular DOF (for example velocity and acceleration of unknown can be prescribed using single initial condition
instance). These multiple entries are distinguished by their CharTypeMode value. The CharTypeMode value is
also used as key in initialValueDictionary. Initial conditions apply and should be taken into account only in one
particular time step, which number is determined from engineering model giveNumberOfTimeStepWhenIcApply
service. If in this time step both boundary condition on unknown and also initial condition on value of this
unknown (TotalMode CharTypeMode) are prescribed, then always value reported by boundary condition is
taken into account.

6 XFEM module

An entity subject to XFEM modeling is described by an EnrichmentItem. Such an entity can be e.g. a crack or
a material interface. The EnrichmentItem is responsible for the geometrical description as well as the enrichment
functions. The EnrichmentItem is also responsible for the necessary updates if the interface is moving (e.g. if a
crack is propagating). The EnrichmentItem has different data members to fulfill these requirements:

• The EnrichmentItem has an EnrichmentDomain that is responsible for the geometrical description. The
EnrichmentDomain can be e.g. a polygon line or a list of node numbers.

• The EnrichmentItem has an EnrichmentFunction that describes the enrichment along the crack or interface.

• The EnrichmentItem has an EnrichmentFront that specifies a special treatment of the ends of the interface
if desired. It may e.g. apply branch functions within a specified radius around the crack tips.

• The EnrichmentItem has a PropagationLaw that describes how the interface evolves in time. It may e.g.
propagate a crack in a specified direction.

The enrichment functions are represented by classes derived from the pure virtual EnrichmentFunction class. In
particular, the following methods have to be overloaded by all subclasses of EnrichmentFunction:

• evaluateEnrFuncAt: Computes the value of the enrichment function in a given point for a given level set value.
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• evaluateEnrFuncDerivAt: Computes the gradient of the enrichment function in a given point for a given level
set value.

• giveJump: Returns the jump of the enrichment function when the level set field changes sign, e.g. 1 for Heaviside,
2 for Sign and 0 for abs enrichment. This method is needed for a generic implementation of cohesive zones.

The enrichment items are stored in an array in the XfemManager class, that also provides initialization and access
to individual enrichment items. The purpose of the XfemManager is to encapsulate XFEM specific functionality.
This avoids to a certain extent the need to modify and penetrate the original code.
When a certain node in the problem domain is subjected to enrichment, the corresponding enrichment item has to
introduce additional degree(s) of freedom in that node. Since several enrichment items can be active in a node, all
DOFs are assigned with a label, that allows to distinguish between them (in traditional FE codes labels are also
used to distinguish physical meaning of particular DOF representing displacement along x,y,z axes, rotations, etc.).
The XfemManager class maintains a pool of available labels and is responsible for their assignment to individual
enrichment items.
Each enrichment item keeps its assigned DOF labels (provided by XfemManager). These are used by individual
enrichment items to introduce and later identify related DOFs in individual nodes. The physical meaning of these
DOFs depends on the enrichment item. For example, a single DOF is needed to represent slip along a slip line and
two DOFs are required for a displacement discontinuity in 2D modeled with Heaviside enrichment.
If the enrichment items evolve in time, the geometrical description needs to be updated and new enriched DOFs may
need to be created. This is done by the updateGeometry method in the XfemManager class. The subtriangulation
of cut elements may have to be updated as a result of the geometrical update (e.g. previously uncut elements may be
cut by a crack and therefore need to be subdivided). The solver class XFEMStatic handles this problem by creating
a new domain with a new subtriangulation and mapping state variables as well as primary variables from the old
domain to the new domain.
The subtriangulation of cut elements as well as computation of B-matrices for 2D XFEM elements are to a large extent
encapsulated in the XfemElementInterface class. Methods needed for cohesive zones are also implemented here.
The 2D elements with XFEM functionality are therefore derived from the standard Element base class, as well as
from the XfemElementInterface.
When a cut element has been subdivided by the XfemElementInterface, a PatchIntegrationRule is used to
represent the integration scheme, where Gauss integration is employed on individual triangles. When initializing
the integration points, their local coordinates (related to the triangle geometry) are mapped into parent element
coordinates and the corresponding integration weights are scaled accordingly. There is no need to store individual
patch geometries, as the parent element geometry is used to correctly evaluate transformation Jacobians (we may
however wish to store the them for debugging or visualization).
If a cohesive crack model is employed, additional integration points along the discontinuity are needed. These are
stored separately, see XfemElementInterface.
The following test cases involve the XFEM module:

• sm/xFemCrackVal.in

• sm/xFemCrackValBranch.in

• sm/xfemCohesiveZone1.in

• benchmark/xfem01.in

• sm/plasticRemap1.in

7 Design of IGA Module

In the traditional FEA context, Element class is parent class for finite elements. It maintains list of nodes, boundary
conditions (loads), integration rules, it keeps links to its interpolation and associated material model and provides
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general services for accessing its attributes, methods for returning its code numbers, and abstract services for the
evaluation of characteristic components (e.g. stiffness matrix, load vector, etc.). In the proposed IGA module, the
individual NURBS (or B-spline) patches are represented by classes derived from the base IGAElement class which is
in turn derived from Element class. As a consequence, the B-spline patch is represented and treated as a single entity,
which returns its contributions that are localized into global system of characteristic equations. This is important
also in the sense of slightly different handling of primary unknowns (see Section ??), compared to the standard FEA.
Moreover, it is quite natural because in a general case, degrees of freedom (DOFs) on all nodes (control points) of the
patch may interact with each other.
One of the fundamental issues, that has to be addressed at the element level, is the integration. The integration, usu-
ally the Gaussian integration, is performed over the nonzero knot spans. Individual integration points are represented
by GaussPoint class. They maintain their spatial coordinates and corresponding integration weights. The individual
integration points are set up and grouped together by base IntegrationRule class. For example, GaussIntegra-
tionRule class, derived from IntegrationRule base, implements Gauss quadrature. An important feature is that
an element may have several integration rules. This is very useful for the implementation of the reduced or selective
integration, for example. The concept of multiple integration rules per element is extended in the present context of
the IGA. The IGA IntegrationElement class is introduced to represent the integration rule for individual nonzero
knot spans, see Figure 5. Since it is derived from GaussIntegrationRule, it inherits the capability to set up Gauss
integration points. The reason for creating a new class is to introduce the new attribute knotSpan, where the corre-
sponding knot span is stored. This information is used in interpolation class to evaluate corresponding basis functions
and their derivatives at a given integration point. Note that generally, the active knot span can be determined for
each integration point on the fly whenever it is needed, but in our approach this information is stored to save the
computational time. The IGA IntegrationElement instances are set up for each nonzero knot span. The element
integration then consists of a loop over individual nonzero knot spans, i.e. the loop over IGA IntegrationElements
and by inner loop over the individual integration points of the particular knot span.
The individual IGA elements are derived from IGAElement class, derived from the base Element. The purpose
of IGAElement class is to provide general method for initialization of individual integration rules on nonzero knot
spans (represented by IGA IntegrationElement class). The integration rules provide methods to create individual
integration points in parametric space. An efficient implementation requires to map coordinates of individual integra-
tion points with parametric coordinates related to knot spans directly to knot vector based space. Specific elements
are derived from the base Element (or IGAElement class), that delivers the generic element part and also from
one or more classes implementing problem-specific functionality, see Figure 6. In the presented approach, Struc-
turalElementEvaluator is an abstract base class, that defines the interface for structural analysis, which includes
methods to evaluate mass and stiffness matrices, load vectors, etc. Some of the methods are already implemented at
this level, such as stiffness matrix evaluation, based on declared abstract services (evaluation of strain-displacement
matrix, etc.), which have to be implemented by derived classes. The example of the evaluation of the element stiffness
matrix, which can be used by both classical and IGA based elements, is presented in Table 1 using symbolic code.

GaussPoint gaussPointArray

IntArray

GaussIntegrationRule

iRule gaussPointArray integrationRulesArray elem

Element

IntegrationRule

IGA_IntegrationElement
knotSpan

Figure 5: Collaboration diagram for IGA IntegrationElement class.
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StructuralElementEvaluator::computeStiffnessMatrix(){

loop on all integration rules of the element:

loop on all Gauss points of the IntegrationRule:

B = this->computeStrainDisplacementMatrix(gp);

D = this->computeConstitutiveMatrix(gp);

dV = this->computeVolumeAround(gp);

stiffnessMatrix->add(product of B^T_D_B_dV);

}

Table 1: Symbolic code for the evaluation of the stiffness matrix (keyword “this” means that the called method is
provided by the class itself).

In the structural analysis context, classes derived from StructuralElementEvaluator implement desired functional-
ity for specific types of structural analyzes (plane-stress, plane-strain, full 3D, etc). Provided that the element defines
its interpolation (B-spline basis functions), it is possible to evaluate remaining abstract methods from StructuralEle-
mentEvaluator interface. This is illustrated in Table 2 on an example of the evaluation of the strain-displacement
matrix for the case of plane stress analysis. Thus, when a new element is defined, it has to create its own interpolation
and should be derived from Element class, which delivers the general basic element functionality and from one or more
evaluators, implementing analysis-specific functionality. Such a design, based on decoupled representation of element
interpolation and problem specific evaluators, has several advantages. It allows to define problem specific methods
only once for several elements with different geometry and interpolation and allows straightforward implementation
of elements for multi-physics simulations.
The description of the element interpolation is encapsulated into a class derived from FEInterpolation class which
defines the abstract interface in terms of services that evaluate shape functions, their derivatives, jacobian matrix, etc.
at given point. In the frame of presented work, the BSplineInterpolation class has been implemented. Each finite
element has to set up its interpolation and provide access to it. This is enforced by general Element interface, that
requires to define the method for accessing element interpolation. The abstract FEInterpolation class interface is
essential, as it allows to implement problem specific element methods already at the top level (like the evaluation of
element interpolation or strain-displacement matrices). An efficient implementation should profit from the locality of
individual interpolation functions which have limited support over several consecutive knot spans. Therefore methods
declared by FEInterpolation class evaluating values of interpolation functions or their derivatives return the values
only for those, that are nonzero in actual knot span. This enables to compute characteristic element contributions on
a knot span basis efficiently. For each individual knot span, the contributions are computed only for generally nonzero
shape functions and then are localized into element contribution. The mask of nonzero shape functions for individual
knot spans can be evaluated using giveKnotBasisFuncMask service declared by FEInterpolation and really provided
by BSplineInterpolation.

IntegrationRule

Element

elem integrationRulesArray

GaussPoint

IGAElement

iRule gaussPointArray

gaussPointArray

StructuralElementEvaluator

BSplinePlaneStressElement

PlaneStressStructural
ElementEvaluator BSplineInterpolation

interpolation

Figure 6: Collaboration diagram for BSplinePlaneStressElement class.



8 MISCELLANEOUS 72

PlaneStressStructuralElementEvaluator::

computeStrainDisplacementMatrix(IntegrationPoint gp) {

FEInterpolation interp = gp->giveElement()->giveInterpolation();

interp->evalShapeFunctDerivatives (der, gp);

answer.resize(3, nnode*2); // 2 DOFs per each node

answer.zero();

for i=1:nnode

// epsilon_x

answer.at(1, i*2-1) = der.at(i, 1); // dN(i)/dx

// epsilon_y

answer.at(2, i*2) = der.at(i, 2); // dN(i)/dy

// shear strain

answer.at(3, i*2-1) = der.at(i, 2); // dN(i)/dy

answer.at(3, i*2) = der.at(i, 1); // dN(i)/dx

}

Table 2: Symbolic code for the evaluation of the strain-displacement matrix.

8 Miscellaneous

8.1 Vectors and Matrices

The OOFEMlib provides the abstraction for integer vectors (IntArray) and for real vectors and matrices (FloatArray
and FloatMatrix). The usual arithmetic operations (like vector and matrix additions, substractions, matrix vector
multiplication, matrix inverse, solution of linear system, finding eigenvalues and eigenvectors) are provided. Hovewer,
the usual math operators (’+’,’*’) are not overloaded, user has to call specific routines. The vector and matrices
provide both 0-based and 1-based component access, they allow for dynamicall resize with optinal chunk. In fact, the
current implementation of resize only grows the receiver, the possible request for shring does not cause the realocation
of memory, since allocated memory is kept for future possible resize. If resize operation wants to force allocation, then
hardResize should be invoked instead. The prefered argument passing is by reference, even for function or procedure
return values. The called function performs resize and fills up the return parametr(s). This is motivated by aim
to avoid memory allocation/dealocation problems. The programer should always avoid to return pointers to newly
allocated arrays or matrices. See section “Coding Standards” for details.

8.2 Solution Step

Class representing solution step. The Solution step instance may represent either time step, load increment, or load
case depending on current Engineering model used.
Solution step maintain the reference to correspoding Engineering model class instance. It maintain also its ”intrinsic
time” and corresponding time increment. The meaning of these values is dependent on current Engineering model
used. The time may represent either current time, load increment number or load case number. See corresponding
Engng model reference for details.
Some components (typically integration points real stresses or integration points nonlocal values) are computationally
wery demanding. Because in typical code, there are number of requests for same value during the computation process,
it may be efficient to store these values and compute them only once. The principal problem is to recognize, when is
necessary to re-compute these stored values to reflect newly reached state. This cannot be determined form solution
step ”time”, because solution step may represent for example load increment, inside which typically many iterations are
needed to reach convergence. For this purpose, a concept of solution state counters is provided. Whenever the solution
state changes, the engineering model updates the solution state counter. The solution state counter is guaranteed to
grow up smoothly (it newer decreases) during solution process. Other components of program (integration points) can
then store their computationally expensive values but have to store also corresponding solution state counter value
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valid when these were computed. Then their can easily check for difference between freezed solution state counter for
their value with current solution state requested from solution step and recompute the values if necessary.

8.3 Load Time Functions

Abstract base class representing load time function. Classes derived from Load class typically describe load from
spatial point of view. The purpose of introducing load time function is to express variation of some components in
time. Load time function typically belongs to domain and is attribute of one or more loads. Generally load time
function is real function of time (y = f(t)).

9 Coding Standards

9.1 Naming Conventions

The names of classes, attributes, services, variables, and functions in a program serve as comments of a sort. So don’t
choose terse names–instead, look for names that give useful information about the meaning of the variable or function.
In a OOFEM program, names should be English, like other comments.
Local variable names can be shorter, because they are used only within one context, where (presumably) comments
explain their purpose.
Try to limit your use of abbreviations in symbol names. It is ok to make a few abbreviations, explain what they mean,
and then use them frequently, but don’t use lots of obscure abbreviations.
Please use capital letters to separate words in a name. Stick to lower case; reserve upper case for macros, and for
name-prefixes that follow a uniform convention. The function or service name should always begin with lovercase
letter, the first uppercase letter in function name indicates, that function is returning newly allocated pointer, which
has to be dealocated. For example, you should use names like ignoreSpaceChangeFlag;
When you want to define names with constant integer values, use enum rather than ‘#define’. GDB knows about
enumeration constants.
Use descriptive file names. The class declarations should be placed in *.h files and class implementation in correspond-
ing *.C files. For each class, create a separate files.

9.2 Parameters and Return Values

The prefered argunent passing method for objects is by reference. Try to avoid rerturning pointers to arrays or
matrices (or generally to any component), since it is not clear, whether to delocate the returned pointer or not. The
most prefered way is to create local variable of vector or matrix type, pass it (using reference) to called function. The
calling function is responsible to properly resize the (output) parameter and set values accordingly. The point is, that
destructors are called for local variables automatically by compiler, so there is no possibility for memory leaks and
the local variable can be reused for multiple calls to target function (inside loop) and therefore there is no need for
repeating memory allocation and dealocation. Sometimes it may be reasonable to return pointer to constant float
array or matrix (representing for example nodal coordinates), since passing output array as parametr will require array
copying.

9.3 Interface concept

Interfaces provide a way, how to organize or group optional or function-specific services into clearly defined units (well
structured code) which can be selectivelly implemented by some classes.
The interface concept can be ilustrated on following simple example. Let’s have an error estimator, represented
by corresponding class. This estimator requires some special services at the element level. Because typically not
all elements provide support for this error estimator, it would be wasting of space to declare required services in
general element base class. (This will lead to big and extremly general interface declared by base class, with only
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some services compulsory and with many optional services. This can lead to confusion and very unclear structure).
Suggested remedy is to declare corresponding interface to error estimator. The interface should declare all servics
needed by error estimator. Particular elements, which would like to provide support for error estimator, simply
derive itself from corresponding interface and implement services from interface. If error estimator wants to access its
interface, it asks element for pointer to its corresponding interface (getInterface method). Once interface is returned,
error estimator can use its services to compute response.
Some dificulty may arise, when implementing general interface service, reguiring general services from class imple-
menting interface. Then simple ”trick” can be made: The interface should declare service giveClass(), which returns
the pointer to class which implements interface. After having this pointer, the interface general service can use all (but
only public) services of class implementing interface. For example some service utilizing the integration over element
volume can be formulated as general, but when interface is defined, there is no connection to element implementing it.
This connection can be established by declaring virtual giveElement() service, which returns the pointer to element
implementing the interface. Then general implementation at interface class level can be made, using base Elment class
public services. Then all element classes implementing the interface should overload only giveElement service, but not
the whole service with integration.
To facilitate the interface concept, the abstract class Interface is introduced. Its role is to provide a base class for
all interfaces. The interface represent some well defined additional or optional ability or support, which is provided
by some class. The services and attributes required are encapsulated in particular derived interface class, which is
derived from base Inferface class. The class which wants to implement interface will simply inherits corresponding
interface class. Each base class, whose derived classes are assumed to implement some interfaces, will declare the
virtual getInterface(InterfaceType) method. This method must be implemented by each derived class implementing
some interface and returns pointer to corresponding interface. This service then provides general way, how to access
particular interface of given class.
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