
OOFEM Input Manual
Release 1.0

Oct 02, 2021

CONTENT

1 Introduction 1
1.1 Running the code . 1
1.2 Syntax and general rules . 2

2 Output and Job description Records 5
2.1 Output file record . 5
2.2 Job description record . 5

3 Analysis record 7
3.1 Structural Problems . 8
3.2 Transport Problems . 15
3.3 Fluid Dynamic Problems . 17
3.4 Coupled Problems . 19

4 Domain record(s) 21
4.1 Output manager record . 21
4.2 Components size record . 22
4.3 Dof manager records . 22
4.4 Element records . 25
4.5 Set records . 25
4.6 Cross section records . 26
4.7 Material type records . 27
4.8 Nonlocal barrier records . 28
4.9 Load and boundary conditions . 28
4.10 Initial conditions . 32
4.11 Time functions records . 32
4.12 Xfem manager record and associated records . 33

5 Appendix 35
5.1 Sparse linear solver parameters . 35
5.2 Eigen value solvers . 37
5.3 Error estimators and indicators . 38
5.4 Material interfaces . 40
5.5 Mesh generator interfaces . 40
5.6 Initialization modules . 41
5.7 Export modules . 42

6 Examples 45
6.1 Beam structure . 45
6.2 Plane stress example . 46
6.3 Examples - parallel mode . 47

i

6.4 Figures . 50

7 About 53

ii

CHAPTER

ONE

INTRODUCTION

This manual describes in details the format and structure of OOFEM text input file. Input file can be prepared in any
text editor or can be generated by a conversion program or FEM pre-processor.

1.1 Running the code

The program can be executed by typing
oofem [option [parameter]] ...

on the command line prompt with the following command line options:

-v Prints oofem version.
-f
path

Path to oofem input file name, if not present, program interactively reads this parameter.

-r
int

Restarts the analysis from given solution step. The corresponding context file (*.osf) must exist.

-rn Turns on the equation renumbering. Default is off.
-ar
int

Restarts the adaptive computation from given solution step. Requires the corresponding context file (*.osf)
and domain input file (*.din) to exists. The domain input file describes the new mesh, its syntax is identical
to syntax of input file, but it does not contains the output file record, job description record and analysis
record.

-l
int

Sets treshold for log messages (Errors=0, Warnings=1, Relevant=2, Info=3, Debug=4).

-qo
path

Redirect the standard output stream (stdout) to given file.

-qe
path

Redirect standard error stream (stderr) to given file.

-c Forces the creation of context file for each solution step.
-t
int

Determines the number of threads to use (requires OpenMP support compiled)

-p Runs in parallel mode using MPI (requires MPI support compiled)

To execute OOFEM program in parallel MPI mode (indicated by the -p flag), users must know the procedure for
executing/scheduling MPI jobs on the particular system(s). For instance, when using the MPICH implementation of
MPI and many others, the following command initiates a program that uses eight processors:
mpirun -np 8 oofem -p program_options

1

OOFEM Input Manual, Release 1.0

1.2 Syntax and general rules

Input file is composed of records. In the current implementation, each record is represented by one line in input file.
The order of records in file is compulsory, and it has following structure:

1. output file record, see section Output file record,

2. job description record, see section Job description record,

3. analysis record, see section Analysis record,

4. domain record, see section Domain record(s),

5. output manager record, see section Output manager record,

6. components size record, see section Components size record,

7. node record(s), see section Dof manager records,

8. element record(s), see section Element records,

9. set record(s), see section Set records,

10. cross section record(s), see section Cross section records,

11. material type record(s), see section Material type records,

12. nonlocal barriers record(s), see section Nonlocal barrier records,

13. load, boundary conditions record(s), see section Load and boundary conditions,

14. initial conditions record(s), see section Initial conditions,

15. time functions record(s), see section Time functions records.

16. optional xfem manager and associated record(s), see section Xfem manager record and associated records

When input line begins with ’#’ character, then it is ignored by the parser and can serve as a comment inside input file.

The individual records consist of record keyword followed by one or more attributes. Each attribute is identified by its
keyword, which can be followed by attribute value(s). Some attributes have no values. The order of attributes in the
record is optional.

Sometimes, the record keyword itself can be variable, taking on a restricted range of possible values. As an example,
OOFEM has element record, desribing particulat element, and record keyword determines the particular element type.
In this case, the record keyword is preceded by star. We call such record keyword as entity keyword. The possible
substitutions for entity keyword are typed using Typewriter font family. Often, some attributes are specific to
particular entity keyword. Then the general format of record is described and entity specific attributes are described
separately. The possible attributes are then union of general and entity specific attributes.

nodal records
Node 1 coords 3 0. 0. 0.
Node 2 coords 3 0. 0. 2. dofidmask 3 1 2 3
element record
Truss2d 1 nodes 2 1 2 crossSect 1

Each attribute value has a specific type, which describe its size and layout. To describe the type of an attribute, the
following notation is used: Keyword #(type), where type determines the attribute type and # is the placeholder
for the attribute value. The possible types of attribute values are following:

• in - integer number.

val1 25

2 Chapter 1. Introduction

OOFEM Input Manual, Release 1.0

• rn - real number.

val2 -0.234e-3

• ch - character (usually for description of unknown type (’d’ for displacement, ’t’ for temperature, etc.).

val3 t

• ia - integer array. The format of integer array is size val(1) ... val(size), where size,
val(1),. . . ,val(size) are integer numbers. Values are separated by one or more spaces. As an example, con-
sider the integer array attribute called nodes= {1, 4, 23}:

nodes 3 1 4 23

• ra - real array. The format of real array is size val(1) ... val(size), where size is integer number
and val(1), . . . , val(size) are real numbers. Values are separated by one or more spaces. As an example, consider
the real array attribute called coords= {1.0, 2.0, 3.0}:

coords 3 1.0 2.0 3.0

• rm - real matrix, format of real matrix is
rows columns {val(1,1) val(1,2) ...; val(2,1) ...}, where “rows” and “columns” are
integer numbers and val(1,1), . . . , are real numbers. Columns are seperated by space or comma and lines by

semicolon. As an example, consider the real matrix attribute called mat1 =

[︂
1.0 −1.0 0.0
2.0 2.5 5.0

]︂
:

mat1 2 3 \{1.0 -1.0; 0.0 2.0; 2.5 5.0\}

• dc - dictionary. Dictionary consist of pairs, each pair has key (character type) and its associated value (integer
type). Format of dictionary is size key(1) val(1) ... key(size) val(size), where size is in-
teger number, key(1),. . . ,key(size) are single character values, and val(1), . . . , val(size) are real numbers. Values
are separated by one or more spaces;

dict1 2 a 1.0 v 0.0

• rl - range list. Range list syntax is { number1 .. numberN (start1 end1) (start2 end2)}. The enclosing brackets
are compulsory. The range list represent list of integer values. Single values can be specified using single values
(number1, .., NumberN). The range of values (all numbers from startI to endI including startI and endI can
be specified using range value in the form (startI endI). The range is described using its start and end values
enclosed in parenthesis. Any number of ranges and single values can be used to specify range list.

range1 { 1 7 8 (10 20) (25 30) }

• et - entity type. For example, it describes the finite element type. Possible type values are mentioned in specific
sections.

• s - character string. The string have to be enclosed in quotes (“”) following after corresponding keyword.

string1 ``string example''

• expr - function expression. The expression have to be enclosed in quotes (“”). The expression is evaluated by
internal parser and represent mathematical expressions as a function of certain variables. The variable names
and meaning are described in specific sections. The usual arithmetic operators like -,+,*,/ are supported and
their evaluation order is taken into account. The evaluation order can be changed using parenthesis. Several
built-in functions are supported (sqrt, sin, cos, tan, atan, asin and acos) - these must be typed using lowercase
letters and their arguments must be enclosed in parenthesis.

1.2. Syntax and general rules 3

OOFEM Input Manual, Release 1.0

expr1 ``2.0*sin(t)/3.0''

The general format of record is
[attribute1_keyword #(type)] ... [attributeXX_keyword #(type)]

The keywords and their values are separated by one or more spaces. Please note, that a single record cooresponds to
one input line in input file.

When some attribute is enclosed in brackets [], then it’s use is optional and often overwrites the default behavior or
adds additional (but optional) information or property (for example adds a loading to node).

Example of input record.
As an example, consider the following record description:
Particle color #(in) mass #(rn) coords #(ra) name #(s) The following listing shows the
corresponding, properly formatted, input record:

Particle 2 color 5 mass 0.18 coords 3 0.0 1.0 2.0 name "P1_36"

4 Chapter 1. Introduction

CHAPTER

TWO

OUTPUT AND JOB DESCRIPTION RECORDS

2.1 Output file record

This record has no keywords and contains a character string, which describes the path to output file. If the file with
the same name exists, it will be overwritten.

2.2 Job description record

This record has no keywords and contains a character string, which describes the job. This description will appear in
the output file.

5

OOFEM Input Manual, Release 1.0

6 Chapter 2. Output and Job description Records

CHAPTER

THREE

ANALYSIS RECORD

This record describes the type of analysis, which should be performed. The analysis record can be splitted into
optional meta-step input records (see below). Then certain attributes originally in analysis record can be specified
independently for each meta-step. This is marked by adding “M” superscript to keyword. Then the attribute format is
Keyword^M #(type).

The general format of this record can be specified using

• “standard-syntax”
nsteps #(in) [renumber #(in)] [profileopt #(in)] attributes #(string)
[ninitmodules #(in)] [nmodules #(in)] [nxfemman #(in)]

• “meta step-syntax”
nmsteps #(in) [ninitmodules #(in)] [nmodules #(in)] [nxfemman #(in)]
immediately followed by nmsteps meta step records with the following syntax:
nsteps #(in) attributes #(string)

The nmsteps parameter determines the number of “metasteps”. The meta step represent sequence of solution
steps with common attributes. There is expected to be nmsteps subsequent metastep records. The meaning of
meta step record parameters (or analysis record parameters in “standard syntax”) is following:

– nsteps - determines number of subsequent solution steps within metastep.

– renumber - Turns out renumbering after each time step. Necessary when Dirichlet boundary conditions
change during simulation. Can also be turned out by the executeable flag -rn.

– profileopt - Nonzero value turns on the equation renumbering to optimize the profile of characteristic
matrix (uses Sloan algorithm). By default, profile optimization is not performed. It will not work in parallel
mode.

– attributes - contains the metastep related attributes of analysis (and solver), which are valid for corre-
sponding solution steps within meta step. If used in standard syntax, the attributes are valid for all solution
step.

– ninitmodules - number of initialization module records for given problem. The initialization modules
are specified after meta step section (or after analysis record, if no metasteps are present). Initialization
modules allow to initialize the state variables by values previously computed by external software. The
available initialization modules are described in section Initialization modules.

– nmodules - number of export module records for given problem. The export modules are specified
after initialization modules. Export modules allow to export computed data into external software for
postprocessing. The available export modules are described in section Export modules.

– nxfemman - 1 implies that an XFEM manager is created, 0 implies that no XFEM manager is created.
The XFEM manager stores a list of enrichment items. The syntax of the XFEM manager record and related
records is described in section Xfem manager record and associated records.

7

OOFEM Input Manual, Release 1.0

– eetype - optional error estimator type used for the problem. Used for adaptive analysis, but can also be
used to compute and write error estimates to the output files. See adaptive engineering models for details.

Not all of analysis types support the metastep syntax, and if not mentioned, the standard-syntax is expected. Currently,
supported analysis types are

• Linear static analysis, see section Linear static analysis,

• Eigen value dynamic, see section EigenValueDynamic,

• Direct explicit nonlinear dynamics, see section NlDEIDynamic,

• Direct explicit (linear) dynamics, see section DEIDynamic,

• Implicit linear dynamic, see section DIIDynamic,

• Incremental linear static problem, see section IncrementalLinearStatic,

• Non-linear static analysis, see section NonLinearStatic.

• Dymmy problem, see section DummyEngngModel

3.1 Structural Problems

3.1.1 StaticStructural

StaticStructural nsteps #(in) [deltat #(...)] [prescribedtimes #(...)] [stiffmode
#(...)] [nonlocalext #(...)] [sparselinsolverparams #(...)]

Static structural analysis. Can be used to solve linear and nonlinear static structural problems, supporting changes
in boundary conditions (applied load and supports). The problem can be solved under direct load or displacement
control, indirect control, or by their arbitrary combination. Note, that the individual solution steps are used to describe
the history of applied incremental loading. The load cases are not supported, for each load case the new analysis has
to be performed. To analyze linear static problem with multiple load combinations, please use LinearStatic solver.

By default all material nonlinearities will be taken into account, geometrical not. To include geometrically nonlinear
effect one must specify level of non-linearity in element records.

The sparselinsolverparams parameter describes the sparse linear solver attributes and is explained in sec-
tion Sparse linear solver parameters. The optional parameter deltat defines the length of time step (equal to
1.0 by default). The times corresponding to individual solution times can be specified using optional parameter
prescribedtimes, allowing to input array of discrete solution times, the number of solution steps is then equal to
the size of this array. .

3.1.2 Linear static analysis

LinearStatics nsteps #(in) [sparselinsolverparams #(...)] [sparselinsolverparams
#(...)]

Linear static analysis. Parameter nsteps indicates the number of loading cases. Problem supports multiple load
cases, where number of load cases correspods to number of solution steps, individual load vectors are formed in
individual time-steps. However, the static system is assumed to be the same for all load cases. For each load case an
auxiliary time-step is generated with time equal to load case number.

The sparselinsolverparams parameter describes the sparse linear solver attributes and is explained in section
Sparse linear solver parameters.

8 Chapter 3. Analysis record

OOFEM Input Manual, Release 1.0

3.1.3 LinearStability

LinearStability nroot #(in) rtolv #(rn) [eigensolverparams #(...)]

Solves linear stability problem. Only first nroot smallest eigenvalues and corresponding eigenvectors will be com-
puted. Relative convergence tolerance is specified using rtolv parameter.

The eigensolverparams parameter describes the sparse linear solver attributes and is explained in section Eigen
value solvers.

3.1.4 EigenValueDynamic

EigenValueDynamic nroot #(in) rtolv #(rn) [eigensolverparams #(...)]

Represents the eigen value dynamic analysis. Only nroot smallest eigenvalues and corresponding eigenvectors will
be computed. Relative convergence criteria is governed using rtolv parameter.

The eigensolverparams parameter describes the sparse linear solver attributes and is explained in section Eigen
value solvers.

3.1.5 NlDEIDynamic

NlDEIDynamic nsteps #(in) dumpcoef #(rn) [deltaT #(rn)]

Represents the direct explicit nonlinear dynamic integration. The central difference method with diagonal mass matrix
is used, damping matrix is assumed to be proportional to mass matrix, 𝐶 = dumpcoef * 𝑀 , where 𝑀 is diagonal
mass matrix. Parameter nsteps specifies how many time steps will be analyzed. deltaT is time step length used
for integration, which may be reduced by program in order to satisfy solution stability conditions. Parameter reduct
is a scaling factor (smaller than 1), which is multiplied with the determined step length adjusted by the program. If
deltaT is reduced internally, then nsteps is adjusted so that the total analysis time remains the same.

The parallel version has the following additional syntax:
&⟨[nonlocalext]⟩&

3.1.6 DEIDynamic

DEIDynamic nsteps #(in) dumpcoef #(rn) [deltaT #(rn)]

Represent the linear explicit integration scheme for dynamic problem solution. The central difference method with
diagonal mass matrix is used, damping matrix is assumed to be proportional to mass matrix, 𝐶 = dumpcoef * 𝑀 ,
where 𝑀 is diagonal mass matrix. deltaT is time step length used for integration, which may be reduced by program
in order to satisfy solution stability conditions. Parameter nsteps specifies how many time steps will be analyzed.

3.1.7 DIIDynamic

DIIDynamic nsteps #(in) deltaT #(rn) [ddtscheme #(in)] [gamma #(rn)] [beta #(rn)]
[eta #(rn)] [delta #(rn)] [theta #(rn)]

Represents direct implicit integration of linear dynamic problems. Solution procedure described in Solution procedure
described in K. Subbaraj and M. A. Dokainish, A SURVEY OF DIRECT TIME-INTEGRATION METHODS IN
COMPUTATIONAL STRUCTURAL DYNAMICS - II. IMPLICIT METHODS, Computers & Structures Vol. 32.
No. 6. pp. 1387-1401, 1989.

3.1. Structural Problems 9

OOFEM Input Manual, Release 1.0

Parameter ddtscheme determines integration scheme, as defined in src/oofemlib/timediscretizationtype.h
(TD_ThreePointBackward=0 (default), TD_TwoPointBackward = 1, TD_Newmark = 2, TD_Wilson = 3, TD_Explicit
= 4).

Parameters beta and gamma determine the stability and acuracy of the integration algorithm, both have zero values
as default. For gamma=0.5 and beta = l/6, the linear acceleration method is obtained. Unconditional stability
is obtained, when 2𝛽 ≥ 𝛾 ≥ 1/2. The dafault values are beta=0.25 and gamma=0.5. The Wilson-theta metod
requires additional theta parameter with default value equal to 1.37. The damping is assumed to be modeled as
Rayleigh damping 𝐶 = 𝜂𝑀 + 𝛿𝐾.

3.1.8 IncrementalLinearStatic

IncrementalLinearStatic endOfTimeOfInterest #(rn) prescribedTimes #(ra)

Represents incremental linear static problem. The problem is solved as series of linear solutions and is intended to be
used for solving linear creep problems or incremental perfect plasticity.

Supports the changes of static scheme (applying, removing and changing boundary conditions) during the analysis.

Response is computed in times defined by prescribedTimes array. These times should include times, when
generally the boundary conditions are changing, and in other times of interest. (For linear creep analysis, the values
should be uniformly distributed on log-time scale, if no change in loading or boundary conditions). The time at the
end of interested is specified using endOfTimeOfInterest parameter.

3.1.9 NonLinearStatic

NonLinearStatic
Non-linear static analysis. The problem can be solved under direct load or displacement control, indirect control, or
by their arbitrary combination. By default all material nonlinearities will be included, geometrical not. To include
geometrically nonlinear effect one must specify level of non-linearity in element records. There are two different
ways, how to specify the parameters - the extended and standard syntax.

Extended syntax

The extended syntax uses the “metastep” concept and has the following format:

NonLinearStatic [nmsteps #(in)] nsteps #(in) [contextOutputStep #(in)]
[sparselinsolverparams #(string)] [nonlinform #(in)] <[nonlocstiff #(in)]>
<[nonlocalext]> <[loadbalancing]>

This record is immediately followed by metastep records with the format described below. The analysis parameters
have following meaning

• nmsteps - determines the number of “metasteps”, default is 1.

• nsteps - determines number of solution steps.

• contextOutputStep - causes the context file to be created for every contextOutputStep-th step and when
needed. Useful for postprocessing.

• The sparselinsolverparams parameter describes the sparse linear solver attributes and is explained in
section Sparse linear solver parameters.

• nonlinform - formulation of non-linear problem. If == 1 (default), total Lagrangian formulation in unde-
formed original shape is used (first-order theory). If == 2, the equlibrated displacements are added to original
ones and updated in each time step (second-order theory).

10 Chapter 3. Analysis record

OOFEM Input Manual, Release 1.0

•

The metastep record has the following general syntax:
nsteps #(in) [controlmode #(in)] [deltat #(rn)] [stiffmode #(in)] [refloadmode
#(in)] solverParams #() [sparselinsolverparams #(string)] [donotfixload #()]

where

• controlmode - determines the type of solution control used for corresponding meta step. if == 0 then indirect
control will be used to control solution process (arc-length method, default). if == 1 then direct displacement
or load control will be used (Newton-Raphson solver). In the later mode, one can apply the prescribed load
increments as well as control displacements.

• deltaT - is time step length. If not specified, it is set equal to 1,0. Each solution step has associated the
corresponding intrinsic time, at which the loading is generated. The deltaT determines the spacing between
solution steps on time scale.

• stiffMode - If == 0 (default) then tangent stiffness will be used at new step beginning and whenever numerical
method will ask for stiffness update. If == 1 the use of secant tangent will be forced. The secant stiffness will be
used at new step beginning and whenever numerical method will ask for stiffness update. If == 2 then original
elastic stiffness will be used during the whole solution process.

• The refloadmode parameter determines how the reference force load vector is obtained from given total-
LoadVector and initialLoadVector. The initialLoadVector describes the part of loading which does not scale.
Works only for force loading, other non-force components (temperature, prescribed displacements should al-
ways given in total values). If refloadmode is 0 (rlm_total, default) then the reference incremental load
vector is defined as totalLoadVector assembled at given time. If refloadmode is 1 (rlm_inceremental) then
the reference load vector is obtained as incremental load vector at given time.

• solverParams - parameters of solver. The solver type is determined using controlmode.

• The sparselinsolverparams parameter describes the sparse linear solver attributes and is explained in
section Sparse linear solver parameters.

• By default, reached load at the end of metastep will be maintained in subsequent steps as fixed, non scaling load
and load level will be reset to zero. This can be changed using keyword donotfixload, which if present,
causes the loading to continue, not resetting the load level. For the indirect control the reached loading will not
be fixed, however, the new reference loading vector will be assembled for the new metastep.

The direct control corresponds to controlmode=1 and the Newton-Raphson solver is used. Under the direct
control, the total load vector assembled for specific solution step represents the load level, where equilibrium is
searched. The implementation supports also displacement control - it is possible to prescribe one or more
displacements by applying “quasi prescribed” boundary condition(s). The load level then represents the time, where
the equilibrium has been found. The Newton-Raphson solver parameters (solverParams) for load-control are:
maxiter #(in) [minsteplength #(in)] [minIter #(in)] [manrmsteps #(in)] [ddm #(ia)]
[ddv #(ra)] [ddltf #(in)] [linesearch #(in)] [lsearchamp #(rn)] [lsearchmaxeta #(rn)]
[lsearchtol #(rn)] [nccdg #(in) ccdg1 #(ia) ccdgN #(ia)] rtolv #(rn) [rtolf #(rn)]
[rtold #(tn)] [initialGuess #(rn)] where

• maxiter determines the maximum number of iterations allowed to reach equilibrium. If equilibrium is not
reached, the step length (corresponding to time) is reduced.

• minsteplength parameter is the minimum step length allowed.

• minIter - minimum number of iterations which always proceed during the iterative solution.

3.1. Structural Problems 11

OOFEM Input Manual, Release 1.0

• If manrmsteps parameter is nonzero, then the modified N-R scheme is used, with the stiffness updated after
manrmsteps steps.

• ddm is array specifying the degrees of freedom, which displacements are controlled. Let the number of these
DOFs is N. The format of ddm array is 2*N dofman1 idof1 dofman2 idof2 . . . dofmanN idofN, where the
dofmani is the number of i-th dof manager and idofi is the corresponding DOF number.

• ddv is array of relative weights of controlled displacements, the size should be equal to N. The actual value of
prescribed dofs is defined as a product of its weight and the value of load time function specified using ddltf
parameter (see below).

• ddltf number of load time function, which is used to evaluate the actual displacements of controlled dofs.

• linesearch nonzero value turns on line search algorithm. The lsearchtol defines tolerance (default value
is 0.8), amplification factor can be specified using lsearchamp parameter (should be in interval (1, 10)), and
parameter lsearchmaxeta defines maximum limit on the length of iterative step (allowed range is (1.5, 15)).

• nccdg allows to define one or more DOF groups, that are used for evaluation of convergence criteria. Each
DOF is checked if it is a member of particular group and in this case its contribution is taken into account when
evaluating the convergence criteria for that group. By default, if nccdg is not specified, one group containing
all DOF types is created. The value of nccdg parameter defines the number of DOF type groups. For each
group, the corresponding DOF types need to be specified using ccdg# parameter, where ’#’ should be replaced
by group number (numbering starts from 1). This array contains the DofIDItem values, that identify the physical
meaning of DOFs in the group. The values and their physical meaning is defined by DofIDItem enum type (see
src/oofemlib/dofiditem.h for reference).

• rtolv determines relative convergence norm (both for displacement iterative change vector and for residual
unbalanced force vector). Optionally, the rtolf and rtold parameters can be used to define independent
relative convergence crteria for unbalanced forces and displacement iterative change. If the default convergence
criteria is used, the parameters rtolv,rtolf, and rtold are real values. If the convergence criteria DOF
groups are used (see bellow the description of nccdg parameter) then they should be specified as real valued
arrays of nccdg size, and individual values define relative convergence criteria for each individual dof group.

• initialGuess is an optional parameter with default vaue 0, for which the first iteration of each step starts
from the previously converged state and applies the prescribed displacement increments. This can lead to very
high strains in elements connected to the nodes with changing prescribed displacements and the state can be
far from equilibrium, which may results into slow convergence and strain localization near the boundary. If
initialGuess is set to 1, the contribution of the prescribed displacement increments to the internal nodal
forces is linearized and moved to the right-hand side, which often results into an initial solution closer to equi-
librium. For instance, if the step is actually elastic, equilibrium is fully restored after the second iteration, while
the default method may require more iterations.

The indirect solver corresponds to controlmode=0 and the CALM solver is used. The value of reference load
vector is determined by refloadmode parameter mentioned above at the first step of each metastep. However, the
user must ensure that the same value of reference load vector could be obtained for all solution steps of particular
metastep (this is necessary for restart and adaptivity to work). The corresponding meta step solver parameters
(solverParams) are:
Psi #(rn) MaxIter #(in) stepLength #(rn) [minStepLength #(in)] [initialStepLength
#(rn)] [forcedInitialStepLength #(rn)] [reqIterations #(in)] [maxrestarts #(in)]
[minIter #(in)] [manrmsteps #(in)] [hpcmode #(in)] [hpc #(ia)] [hpcw #(ra)]
[linesearch #(in)] [lsearchamp #(rn)] [lsearchmaxeta #(rn)] [lsearchtol #(rn)]
[nccdg #(in) ccdg1 #(ia) . . . ccdgN #(ia)] rtolv #(rn) [rtolf #(rn)] [rtold #(rn)]
[pert #(ia)] [pertw #(ra)] [rpa #(rn)] [rseed #(in)] where

• Psi - CALM Ψ control parameter. For Ψ = 0 displacement control is applied. For nonzero values the load
control applies together with displacement control (ALM). For large Ψ load control apply.

12 Chapter 3. Analysis record

OOFEM Input Manual, Release 1.0

• MaxIter - determines the maximum number of iteration allowed to reach equilibrium state. If this limit is
reached, restart follows with smaller step length.

• stepLength - determines the maximum value of arc-length (step length).

• minStepLength - minimum step length. The step length will never be smaller. If convergence problems are
encountered and step length cannot be decreased, computation terminates.

• initialsteplength - determines the initial step length (the arc-length). If not provided, the maximum
step length (determined by stepLength parameter) will be used as the value of initial step length.

• forcedInitialStepLength - When simulation is restarted, the last predicted step length is used. Use
forcedInitialStepLength parameter to override the value of step length. This parameter will also
override the value of initial step length set by initialsteplength parameter.

• reqIterations - approximate number of iterations controlled by changing the step length.

• maxrestarts - maximum number of restarting computation when convergence not reached up to MaxIter.

• minIter - minimum number of iterations which always proceed during the iterative solution.
reqIterations are set to be the same, MaxIter are increased if lower.

• manrmsteps - Forces the use of accelerated Newton Raphson method, where stiffness is updated after
manrmsteps steps. By default, the modified NR method is used (no stiffness update).

• hpcmode Parameter determining the alm mode. Possible values are: 0 - (default) full ALM with quadratic
constrain and all dofs, 1 - (default, if hpc parameter used) full ALM with quadratic constrain, taking into
account only selected dofs (see hpc param), 2 - linearized constrain in displacements only, taking into account
only selected dofs with given weight (see hpc and hpcw parameters).

• hpc - Special parameter for Hyper-plane control, when only selected DOFs are taken account in ALM step
length condition. Important mainly for material nonlinear problems with strong localization. This array selects
the degrees of freedom, which displacements are controlled. Let the number of these DOFs be N. The format of
ddm array is 2*N dofman1 idof1 dofman2 idof2 . . . dofmanN idofN, where the dofmani is the number of i-th
dof manager and idofi is the corresponding DOF number.

• hpcw Array of DOF weights in linear constraint. The dof ordering is determined by hpc parameter, the size of
the array should be N.

• linesearch nonzero value turns on line search algorithm. The lsearchtol defines tolerance, amplifi-
cation factor can be specified using lsearchamp parameter (should be in interval (1, 10)), and parameter
lsearchmaxeta defines maximum limit on the length of iterative step (allowed range is (1.5, 15)).

• nccdg allows to define one or more DOF groups, that are used for evaluation of convergence criteria. Each
DOF is checked if it is a member of particular group and in this case its contribution is taken into account when
evaluating the convergence criteria for that group. By default, if nccdg is not specified, one group containing
all DOF types is created. The value of nccdg parameter defines the number of DOF type groups. For each
group, the corresponding DOF types need to be specified using ccdg# parameter, where ’#’ should be replaced
by group number (numbering starts from 1). This array contains the DofIDItem values, that identify the physical
meaning of DOFs in the group. The values and their physical meaning is defined by DofIDItem enum type (see
src/oofemlib/dofiditem.h for reference).

• rtolv determines relative convergence norm (both for displacement iterative change vector and for residual
unbalanced force vector). Optionally, the rtolf and rtold parameters can be used to define independent
relative convergence crteria for unbalanced forces and displacement iterative change. If the default convergence
criteria is used, the parameters rtolv,rtolf, and rtold are real values. If the convergence criteria DOF
groups are used (see bellow the description of nccdg parameter) then they should be specified as real valued
arrays of nccdg size, and individual values define relative convergence criteria for each individual dof group.

• pert Array specifying DOFs that should be perturbed after the first iteration of each step. Let the number of
these DOFs be M. The format of ddm array is 2*M dofman1 idof1 dofman2 idof2 . . . dofmanN idofN, where

3.1. Structural Problems 13

OOFEM Input Manual, Release 1.0

the dofmani is the number of i-th dof manager and idofi is the corresponding DOF number.

• pertw Array of DOF perturbations. The dof ordering is determined by pert parameter, the size of the array
should be M.

• rpa Amplitude of random perturbation that is applied to each DOF.

• rseed Seed for the random generator that generates random perturbations.

Standard syntax

In this case, all parameters (for analysis as well as for the solver) are supplied in analysis record. The default meta
step is created for all solution steps required. Then the meta step attributes are specified within analysis record. The
format of analysis record is then following
NonLinearStatic nsteps #(in) [nonlocstiff #(in)] [contextOutputStep #(in)]
[controlmode #(in)] [deltat #(rn)‘‘] rtolv #(rn) [stiffmode #(in)] lstype #(in) smtype
#(in) solverParams #() [nonlinform #(in)] <[nonlocstiff #(in)]> <[nonlocalext]>
<[loadbalancing]

The meaning of parameters is the same as for extended syntax.

Parameter lstype allows to select the solver for the linear system of equations. Parameter smtype allows to select
the sparse matrix storage scheme. The scheme should be compatible with the solver type. See section Sparse linear
solver parameters for further details.

3.1.10 Adaptive linear static

Adaptlinearstatic nsteps #(in) [sparselinsolverparams #(...)] [meshpackage #(in)]
errorestimatorparams #(...)

Adaptive linear static analysis. Multiple loading cases are not supported. Due to linearity of a problem, the complete
reanalysis from the beginning is done after adaptive remeshing. After first step the error is estimated, information
about required density is generated (using mesher interface) and solution terminates. If the error criteria is not satisfied,
then the new mesh and corresponding input file is generated and new analysis should be performed until the error is
acceptable. Currently, the available error estimator for linear problems is Zienkiewicz-Zhu. Please note, that adaptive
framework requires specific functionality provided by elements and material models. For details, see element and
material model manuals.

• Parameter nsteps indicates the number of loading cases. Should be set to 1.

• The sparselinsolverparams parameter describes the sparse linear solver attributes and is explained in
section Sparse linear solver parameters.

• The meshpackage parameter selects the mesh package interface, which is used to generate information about
required mesh density for new remeshing. The supported interfaces are explained in section Mesh generator
interfaces. By default, the T3d interface is used.

• The errorerestimatorparams parameter contains the parameters of Zienkiewicz Zhu Error Estimator.
These are described in section Error estimators and indicators.

3.1.11 Adaptive nonlinear static

Adaptnlinearstatic Nonlinearstaticparams #() [equilmc #(in)] [meshpackage #(in)]
[eetype #(in)] errorestimatorparams #(...)

14 Chapter 3. Analysis record

OOFEM Input Manual, Release 1.0

Represents Adaptive Non-LinearStatic problem. Solution is performed as a series of increments (loading or displace-
ment). The error is estimated at the end of each load increment (after equilibrium is reached), and based on reached
error, the computation continues, or the new mesh densities are generated and solution stops. Then the new discretiza-
tion should be generated. The truly adaptive approach is supported, so the computation can be restarted from the last
step (see section Running the code), solution is mapped to new mesh (separate solution step) and new load increment
is applied. Of course, one can start the analysis from the very beginning using new mesh. Currently, the available
estimators/indicators include only linear Zienkiewicz-Zhu estimator and scalar error indicator. Please note, that adap-
tive framework requires specific functionality provided by elements and material models. For details, see element and
material model manuals.

• Set of parameters Nonlinearstaticparams are related to nonlinear analysis. They are described in section
NonLinearStatic.

• Parameter equilmc determines, whether after mapping of primary and internal variables to new mesh the
equilibrium is restored or not before new load increment is applied. The possible values are: 0 (default), when
no equilibrium is restored, and 1 forcing the equilibrium to be restored before applying new step.

• The meshpackage parameter selects the mesh package interface, which is used to generate information about
required mesh density for new remeshing. The supported interfaces are explained in section Mesh generator
interfaces. By default, the T3d interface is used.

• Parameter eetype determines the type of error estimator/indicator to be used. The parameters
errorestimatorparams represent set of parameters corresponding to selected error estimator. For de-
scription, follow to section Error estimators and indicators.

3.1.12 Free warping analysis

FreeWarping nsteps #(in)

Free warping analysis computes the deplanation function of cross section with arbitrary shape. It is done by solving
the Laplace’s equation with automatically generated boundary conditions corresponding to the free warping problem.

This type of analysis supports only TrWarp elements and WarpingCS cross sections. One external node must be
defined for each warping cross section. The coordinates of this node can be arbitrary but this node must be defined with
parametr DofIDMask 1 24 and one boundary condition which represents relative twist acting on corresponding
warping cross section. No additional loads make sence in free warping analysis.

Parameter nsteps indicates the number of loading cases. Series of loading cases is maintained as sequence of time-
steps. For each load case an auxiliary time-step is generated with time equal to load case number. Load vectors for
each load case are formed as load vectors at this auxiliary time.

3.2 Transport Problems

3.2.1 Stationary transport problem

StationaryProblem nsteps #(in) [sparselinsolverparams #(...)] [exportfields #(ia)]

Stationary transport problem. Series of loading cases is maintained as sequence of time-steps. For each load case an
auxiliary time-step is generated with time equal to load case number. Load vectors for each load case are formed as
load vectors at this auxiliary time. The sparselinsolverparams parameter describes the sparse linear solver
attributes and is explained in section Sparse linear solver parameters.

If the present problem is used within the context of staggered-like analysis, the temperature field obtained by the
solution can be exported and made available to any subsequent analyses. For example, temperature field obtained by
present analysis can be taken into account in subsequent mechanical analysis. To allow this, the temperature must be
“exported”. This can be done by adding array exportfields. This array contains the field identifiers, which tell

3.2. Transport Problems 15

OOFEM Input Manual, Release 1.0

the problem to register its primary unknowns under given identifiers. See file field.h. Then the subsequent analyses
can get access to exported fields and take them into account, if they support such feature.

3.2.2 Transient transport problem

TransientTransport nsteps #(in) deltaT #(rn) or dTfunction #(in) or prescribedtimes
#(ra) alpha #(rn) [initT #(rn)] [lumped] [keeptangent] [exportfields #(ia)]

Nonlinear implicit integration scheme for transient transport problems. The generalized midpoint rule (sometimes
called 𝛼-method) is used for time discretization, with alpha parameter, which has limits 0 ≤ 𝛼 ≤ 1. For 𝛼 = 0
explicit Euler forward method is obtained, for 𝛼 = 0.5 implicit trapezoidal rule is recovered, which is unconditionally
stable, second-order accurate in ∆𝑡, and 𝛼 = 1.0 yields implicit Euler backward method, which is unconditionally
stable, and first-order accurate in ∆𝑡. deltaT is time step length used for integration, nsteps parameter specifies
number of time steps to be solved. It is possible to define dTfunction with a number referring to corresponding
time function, see section Time functions records. Variable time step is advantageous when calculating large time
intervals.

The initT sets the initial time for integration, 0. by default. If lumped is set, then the stabilization of numerical
algorithm using lumped capacity matrix will be used, reducing the initial oscillations. See section Stationary transport
problem for an explanation on exportfields.

This transport problem supports sets and changes in number of equations. It is possible to impose/remove Dirichlet
boundary conditions during solution.

3.2.3 Transient transport problem - linear case - obsolete

NonStationaryProblem nsteps #(in) deltaT #(rn) | deltaTfunction #(in) alpha
#(rn) [initT #(rn)] [lumpedcapa] [sparselinsolverparams #(..)] [exportfields #(ia)]
[changingProblemSize]

Linear implicit integration scheme for transient transport problems. The generalized midpoint rule (sometimes called
𝛼-method) is used for time discretization, with alpha parameter, which has limits 0 ≤ 𝛼 ≤ 1. For 𝛼 = 0 explicit
Euler forward method is obtained, for 𝛼 = 0.5 implicit trapezoidal rule is recovered, which is unconditionally stable,
second-order accurate in ∆𝑡, and 𝛼 = 1.0 yields implicit Euler backward method, which is unconditionally stable,
and first-order accurate in ∆𝑡. deltaT is time step length used for integration, nsteps parameter specifies number
of time steps to be solved. It is possible to define deltaTfunction with a number referring to corresponding
time function, see section Time functions records. Variable time step is advantageous when calculating large time
intervals. It is strongly suggested to use nonlinear transport solver due to stability reasons, see section Transient
transport problem.

The initT sets the initial time for integration, 0 by default. If lumpedcapa is set, then the stabilization of numerical
algorithm using lumped capacity matrix will be used, reducing the initial oscillations. See section Stationary transport
problem for an explanation on exportfields.

This linear transport problem supports changes in number of equations. It is possible to impose/remove Dirichlet
boundary conditions during solution. This feature is enabled with changingProblemSize, which ensures storing
solution values on nodes (DoFs) directly. If the problem does not grow/decrease during solution, it is more efficient to
use conventional solution strategy and the parameter should not be mentioned.

Note: This problem type requires transport module and it can be used only when this module is included in your
oofem configuration.

16 Chapter 3. Analysis record

OOFEM Input Manual, Release 1.0

3.2.4 Transient transport problem - nonlinear case - obsolete

NlTransientTransportProblem nsteps #(in) deltaT #(rn) | deltaTfunction #(in) alpha
#(rn) [initT #(rn)] [lumpedcapa #()] [nsmax #(in)] rtol #(rn) [manrmsteps #(in)]
[sparselinsolverparams #(...)] [exportfields #(ia)] [changingProblemSize]

Implicit integration scheme for transient transport problems. The generalized midpoint rule (sometimes called 𝛼-
method) is used for time discretization, with alpha parameter, which has limits 0 ≤ 𝛼 ≤ 1. For 𝛼 = 0 explicit
Euler forward method is obtained, for 𝛼 = 0.5 implicit trapezoidal rule is recovered, which is unconditionally stable,
second-order accurate in ∆𝑡, and 𝛼 = 1.0 yields implicit Euler backward method, which is unconditionally stable,
and first-order accurate in ∆𝑡. See matlibmanual.pdf for solution algorithm.

deltaT is time step length used for integration, nsteps parameter specifies number of time steps to be solved.
For deltaTfunction and initT see section Transient transport problem - linear case - obsolete. Parameter
maxiter determines the maximum number of iterations allowed to reach equilibrium (default is 30). Norms of resid-
ual physical quantity (heat, mass) described by solution vector and the change of solution vector are determined in each
iteration. The convergence is reached, when the norms are less than the value given by rtol. If manrmsteps pa-
rameter is nonzero, then the modified N-R scheme is used, with the left-hand side matrix updated after manrmsteps
steps. nsmaxmaximum number of iterations per time step, default is 30. If lumpedcapa is set, then the stabilization
of numerical algorithm using lumped capacity matrix will be used, reducing the initial oscillations.

See the Section Stationary transport problem for an explanation on exportfields. The meaning of
changingProblemSize is given in Section Transient transport problem - linear case - obsolete.

Note: This problem type requires transport module and it can be used only when this module is included in your
oofem configuration.

3.3 Fluid Dynamic Problems

3.3.1 Transient incompressible flow - CBS Algorithm

CBS nsteps #(in) deltaT #() [theta1 #(in)] [theta2 #(in)] [cmflag #(in)] [scaleflag
#(in) lscale #(in) uscale #(in) dscale #(in)] [lstype #(in)] [smtype #(in)]

Solves the transient incompressible flow using algorithm based on Characteristics Based Split (CBS, for reference
see O.C.Zienkiewics and R.L.Taylor: The Finite Element Method, 3rd volume, Butterworth-Heinemann, 2000). At
present, only semi-implicit form of the algorithm is available and energy equation, yielding the temperature field, is
not solved. Parameter nsteps determines number of solution steps. Parameter deltaT is time step length used for
integration. This time step will be automatically adjusted to satisfy integration stability limits ∆𝑡 ≤ ℎ

|𝑢| and ∆𝑡 ≤ ℎ2

2𝜈 ,
if necessary. Parameters theta1 and theta2 are integration constants, 𝜃1, 𝜃2 ∈ ⟨ 12 , 1⟩. If cmflag is given a
nonzero value, then consistent mass matrix will be used instead of (default) lumped one.

The characteristic equations can be solved in non-dimensional form. To enable this, the scaleflag should have
a nonzero value, and the following parameters should be provided: lscale, uscale, and dscale representing
typical length, velocity, and density scales.

Parameter lstype allows to select the solver for the linear system of equations. Parameter smtype allows to select
the sparse matrix storage scheme. The scheme should be compatible with the solver type. See section Sparse linear
solver parameters for further details.

3.3.2 Transient incompressible flow SUPG/PSPG Algorithm

SUPG nsteps #(in) deltaT #(rn) rtolv #(rn) [atolv #(rn)] [stopmaxiter #(in)] [alpha
#(rn)] [cmflag #(in)] [deltatltf #(in)] [miflag #(in)] [scaleflag #(in) lscale #(in)

3.3. Fluid Dynamic Problems 17

OOFEM Input Manual, Release 1.0

uscale #(in) dscale #(in)] [lstype #(in)] [smtype #(in)]

Solves the transient incompressible flow using stabilized formulation based on SUPG and PSPG stabilization terms.
The stabilization provides stability and accuracy in the solution of advection-dominated problems and permits usage
of equal-order interpolation functions for velocity and pressure. Furthermore, stabilized formulation significantly
improves convergence rate in iterative solution of large nonlinear systems of equations.

By changing the value 𝛼, different methods from “Generalized mid-point family” can be chosen, i.e., Forward Euler
(𝛼 = 0), Midpoint rule (𝛼 = 0.5), Galerkin (𝛼 = 2/3), and Backward Euler (𝛼 = 1). Except the first one, all the
methods are implicit and require matrix inversion for solution. Some results form an energy method analysis suggest
unconditional stability for 𝛼 ≥ 0.5 for the generalized mid-point family. As far as accuracy is concerned, the midpoint
rule is to be generally preferred.

Parameter nsteps determines number of solution steps. Parameter deltaT is time step length used for integration.
Alternatively, the load time function can be used to determine time step length for particular solution step. The load
time function number is determined by parameter deltatltf and its value evaluated for solution step number should
yield the step length.

Parameters rtolv and atolv allow to specify relative and absolute errors norms for residual vector. The equilibrium
iteration process will stopped when both error limits are satisfied or when the number of iteration exceeds the value
given by parameter stopmaxiter.

If cmflag is given a nonzero value, then consistent mass matrix will be used instead of (default) lumped one.

The algorithm allows to solve the flow of two immiscible fluids in fixed spatial domain (currently only in 2d). This
can be also used for solving free surface problems, where one of the fluids should represent air. To enable multi-fluid
analysis, user should set parameter miflag. The supported values are described in section Material interfaces. Please
note, that the initial distribution of reference fluid volume should be provided as well as constitutive models for both
fluids.

The characteristic equations can be solved in non-dimensional form. To enable this, the scaleflag should have
a nonzero value, and the following parameters should be provided: lscale, uscale, and dscale representing
typical length, velocity, and density scales.

Parameter lstype allows to select the solver for the linear system of equations. Parameter smtype allows to select
the sparse matrix storage scheme. Please note that the present algorithm leads to a non-symmetric matrix. The scheme
should be compatible with the solver type. See section Sparse linear solver parameters for further details.

3.3.3 Transient incompressible flow (PFEM Algorithm)

PFEM nsteps #(in) deltaT #(rn) material #(in) cs #(in) pressure #(in) [mindeltat
#(rn)] [maxiter #(in)] [rtolv #(rn)] [rtolp #(rn)] [alphashapecoef #(rn)]
[removalratio #(rn)] [scheme #(in)] [lstype #(in)] [smtype #(in)]

Solves the transient incompressible flow using particle finite element method based on the Lagrangian formulation of
Navier-Stokes equations.

Mesh nodes are represented by PFEMParticles (see pfemparticles), which can freely move and even separate from
the main domain. To integrate governing equations in each solution step, a temporary mesh, built from particles, is
needed. The mesh is rebuilt from scratch in each solution step to prevent large distortion of elements. Paramters cs
and material assign types from cross section and material record to created elements. Thus, the problem is defined
without any elements in the input file.

Mesh is generated using Delaunay triangulation and Alpha shape technique for the identification of the free surface.
The parameter alphashapecoef should reflect initial distribution of PFEMParticles. Value approximately equal
to 1,5-multiple of shortest distance of two neighboring particles has been found well. On the free surface the zero-
pressure boundary condition is enforced. This must be defined in boundary condition record under the number defined
by pressure.

18 Chapter 3. Analysis record

OOFEM Input Manual, Release 1.0

Parameter scheme controls whether the equation system for the components of the auxiliary velocity is solved ex-
plicitly (0) or implicitly (1). The last is the default option.

Parameter nsteps determines number of solution steps. Parameter deltaT is time step length used for integration.
To ensure numerical stability, step length is adapted upon mesh geometry and velocity of paricular nodes. To avoid to
short time length a minimal size can be defined by mindeltat. Alternatively prescribing limit removalratio of
the element edge length too close particles can be removed from solution.

Optional parameters rtolv and rtolp allow to specify relative norms for velocity and pressure difference of two
subsequent iteration step. Default values are 1.e-8. By default maximal 50 iterations are performed, if not specified by
maxiter.

Parameter lstype allows to select the solver for the linear system of equations. Parameter smtype allows to select
the sparse matrix storage scheme. Please note that the present algorithm leads to a non-symmetric matrix. The scheme
should be compatible with the solver type. See section Sparse linear solver parameters for further details.

3.4 Coupled Problems

3.4.1 Staggered Problem

StaggeredProblem (nsteps #(in) deltaT #(rn)) | timeDefinedByProb #(in) prob1 #(s)
prob2 #(s) [stepMultiplier #(rn)]

Represent so-called staggered analysis. This can be described as an sequence of sub-problems, where the result of
some sub-problem in the sequence can depend on results of previous sub-problems in sequence. Typical example is
heat transfer analysis followed by mechanical analysis taking into account the temperature field generated by the heat
transfer analysis. Similar analysis can be done when coupling moisture transport with concrete drying strain.

The actual implementation supports only sequence of two sub-problems. The sub-problems are described using sub-
problem input files. The syntax of sub-problem input file is the same as for standalone problem. The only addition is
that sub-problems should export their solution fields so that they became available for subsequent sub-problems. See
the Section Stationary transport problem.

The subproblem input files are described using prob1 and prob2 parameters, which are strings containing a path to
sub-problem input files, the prob1 contains input file path of the first sub-problem, which runs first for each solution
step, the prob2 contains input file path of the second sub-problem.

There are two options how to control a time step sequence. The first approach uses timeDefinedByProb which
uses time sequence from the corresponding subproblem. The subproblem may specify arbitrary loading steps and
allows high flexibility. The second approach uses the staggered problem to take control over time. Therefore any
sub-problem time-stepping parameters are ignored (even if they are required by sub-problem input syntax) and only
staggered-problem parameters are relevant. deltaT is than a time step length used for integration, nsteps parame-
ter specifies number of time steps to be solved. stepMultipliermultiplies all times with a given constant. Default
is 1.

Note: This problem type is included in transport module and it can be used only when this module is configured.
Note: All material models derived from StructuralMaterial base will take into account the external registered temper-
ature field, if provided.

3.4.2 FluidStructure Problem

FluidStructureProblem nsteps #(in) deltaT #(rn) prob1 #(s) prob2 #(s) [maxiter
#(in)] [rtolv #(rn)] [rtolp #(rn)]

Represents a fluid-structure analysis based on StaggeredProblem but providing iterative synchronization of sub-
problems. The implementation uses the the PFEM model Transient incompressible flow (PFEM Algorithm) for the

3.4. Coupled Problems 19

OOFEM Input Manual, Release 1.0

fluid part. For the structural part a full dynamic analysis using implicit direct integration DIIDynamic DIIDynamic is
considered.

The coupling of both phases is based on the idea of enforcing compatibility on the interface. Special fluid particle are
attached to every structural node on the interface that can be hit by the fluid. These special particles have no degrees of
freedom associated, so no equations are solved on them. However, their movement is fully determined by associated
structural nodes. Their velocities governed by the solid part affect the fluid equation naturally.

This iterative procedure is based on the so-called Dirichlet-Neumann approach. Dirichlet boundary conditions are
the prescribed velocities on the fluid side of the interface, whereas applied forces on the structural side represent the
Neumann boundary conditions.

The convergence criterion is based on the difference of the pressure and velocity values on the interface from the
subsequent iterative steps. Once they are smaller than prescribed tolerance, the iteration is terminated and solution can
proceed to the next step.

The subproblem input files are described using prob1 and prob2 parameters, which are strings containing a path to
sub-problem input files, the prob1 contains input file path of the first sub-problem, which runs first for each solution
step, the prob2 contains input file path of the second sub-problem. The time step sequence is controlled by the
number of steps nsteps and the time step length deltaT.

Optional parameters rtolv and rtolp allow to specify relative norms for velocity and pressure differnce of two
subsequent iteration step. Default values are 1.e-3. By default maximal 50 iterations are performed, if not specified by
maxiter.

Note: This problem type is included in PFEM module and it can be used only when this module is configured.

3.4.3 DummyEngngModel

Dummy nnmodules #(in)

Represents a dummy model, whch is not capable to perform any analysis. Its intended use is to invoke the configured
export modules, so that the problem geometry can be exported without requiring to actually solve the problem.

20 Chapter 3. Analysis record

CHAPTER

FOUR

DOMAIN RECORD(S)

This set of records describes the whole domain and its type. Depending on the type of problem, there may be one or
several domain records. If not indicated, one domain record is default for all problem types.

The domain type is used to resolve the default number of DOFs in node and their physical meaning. Format is
following
domain domainType

The domainType can be one from the following

• The 2dPlaneStress and 2d-Truss modes declare two default dofs per node (u-displacement, v-
displacement),

• The 3d mode declares three default dofs per node (u-displacement, v-displacement, w-displacement),

• The 2dMindlinPlatemode declares three default dofs per node (w-displacent, u-rotation, v-rotation). Strain
vector contains 𝜅𝑥𝑥, 𝜅𝑦𝑦 , 𝜅𝑥𝑦 , 𝛾𝑥𝑧 , 𝛾𝑦𝑧 . Stress vector contains 𝑚𝑥𝑥, 𝑚𝑦𝑦, 𝑚𝑥𝑦 , 𝑞𝑥𝑧 , 𝑞𝑦𝑧 .

• The 3dShell mode declares six default dofs per node (displacement and rotation along each axis).

• The 2dBeam mode declares three default dofs per node (u-displacement, w-displacement, v-rotation).

• The 2dIncompFlow mode declares three default dofs per node (u-velocity, v-velocity, and pressure). The
default number of dofs per node as well as their physical meaning can be overloaded in particular dof manager
record (see section Dof manager records).

The further records describe particular domain components - OutputManagers, DofManagers, Elements, Cross-
Section models, Material Models, Boundary and Initial Conditions and Load time functions.

4.1 Output manager record

The output manager controls output. It can filter output to specific solution steps, and within these selected steps
allows also to filter output only to specific dof managers and elements. The format of output manager record is
[tstep_all] [tstep_step #(in)] [tsteps_out #(rl)] [dofman_all] [dofman_output #(rl)]
[dofman_except #(rl)] [element_all] [element_output #(rl)] [element_except #(rl)]

To select all solution steps, in which output will be performed, use tstep_all. To select each tstep_step-nth
step, use tstep_step parameter. In order to select only specific solution steps, the tsteps_outlist can be
specified, supplying solution step number list in which output will be done. The combination of tstep_step and
tsteps_out parameters is allowed.

21

OOFEM Input Manual, Release 1.0

Output manager allows also to filter output to only specific dof managers and elements. If these specific members are
selected, the output happens only in selected solution steps. The dofman_all and element_all parameters
select all dof managers or elements respectively. Parameter arrays dofman_output and element_output
allow to select only specific members. Numbers of selected members are then contained in dofman_output or
element_output lists respectively. The previously selected members can be explicitly de-selected by specifying
their component numbers in dofman_except or element_except lists. A few examples:
dofman_output {1 3} prints nodes 1,3
dofman_output {(1 3)} prints nodes 1,2,3
element_output {1 3} prints elements 1,3
element_output {(1 3)} prints elements 1,2,3
element_output {(1 3) 5 6} prints elements 1,2,3,5,6

4.2 Components size record

This record describes the number of components in related domain. The particular records will follow immediately in
input file. The general format is:
ndofman #(in) nelem #(in) ncrosssect #(in) nmat #(in) nbc #(in) nic #(in) nltf
#(in) [nbarrier #(in)] where ndofman represents number of dof managers (e.g. nodes) and their associated
records, nelem represents number of elements and their associated records, ncrosssect is number of cross
sections and their records, nmatdnMat is number of material models and their records, nbc represents number of
boundary conditions (including loads) and their records, nic parameter determines the number of initial conditions,
and nltf represents number of time functions and their associated records. The optional parameter nbarrier
represents the number of nonlocal barriers and their records. If not specified, no barriers are assumed.

4.3 Dof manager records

These records describe individual DofManager records (i.e. nodes or element sides (if they manage some DOFs)).
The general format is following:

DofManagerType #(in) [load #(ra)] [DofIDMask #(ia)] [bc #(ia)] [ic #(ia)] [doftype
#(ia) masterMask #(ia)] <[shared]> | <[remote]> | <[null]> <[partitions #(ia)]>

The order of particular records is optional, the dof manager number is determined by (#(in) parameter. The num-
bering of individual dof managers is arbitrary, it could be even non-continuous. In this context, one could think of dof
manager number as a label that is assigned to individual dof manager and by which the dof manager is referenced.

By default, the nodal DOFs are determined by asking all the connected elements. Specifying additional dofs can be
done using the using the DofIDMask array which determines their physical interpretation. Each item of DofIDMask
array describes the physical meaning of corresponding DOF in dof manager. Currently the following values are
supported: {u-displacement=1, v-displacement=2, w-displacement=3, u-rotation=4, v-rotation=5, w-rotation=6, u-
velocity=7, v-velocity=8, w-velocity=9, temperature=10, pressure=11, special dofs for gradient-type constitutive mod-
els=12 and 13, mass concentration=14, special dofs for extended finite elements (XFEM)=15–30}. It is not allowed
to have two DOFs with the same physical meaning in the same DofManager.

The applied primary (Dirichlet) boundary conditions are specified using “bc” record, while natural boundary condi-
tions using “load” parameter.

• The size of “bc” array (primary bc) should be equal to number of DOFs in dof manager and i-th value relates to
i-th DOF - the ordering and physical meaning of DOFs is determined by domain record and can be optionally
specified for each dof manager individually (see next paragraph). The values of this array are corresponding
boundary condition record numbers or zero, if no primary bc is applied to corresponding DOF. The compatible
boundary condition type are required: primary conditions require “BoundaryCondition” records.

22 Chapter 4. Domain record(s)

OOFEM Input Manual, Release 1.0

• The load “array” contains record numbers of natural boundary conditions that are applied. The required record
type for natural condition is “NodalLoad”. The actual value is the summation of all contributions, if more than
one natural bc is applied. See section on boundary conditions for the syntax. Please note, that the values of
natural bc for individual DOFs are specified in its record, not in dofmanager record.

By default, if “bc” and/or “load” parameters are omitted, no primary and/or natural bc are applied. Analogously, initial
conditions are represented using ic array. The size of ic array should be equal to number of DOFs in dof manager.
The values of this array are corresponding initial condition record numbers or zero, if no initial condition is applied to
corresponding DOF (in this case zero value is assumed as value of initial condition).

Parameters dofType and masterMask allows to connect some dof manager’s dofs (so-called “slave” dofs) to
corresponding dof (according to their physical meaning) of another dof manager (so-called “master” dof). The master
slave principle allows for example simple modeling of structure hinges, where multiple elements are connected by
introducing multiple nodes (with same coordinates) sharing the same displacement dofs and each one possessing their
own rotational dofs. Parameter dofType determines the type of (slave) dof to create. Currently supported values are
0 for master DOF, 1 for simpleSlave DOF (linked to another single master DOF), and 2 for general slave dof, that can
depend on different DOFs belonging to different dof managers. If dofType is not specified, then by default all DOFs
are created as master DOFs. If provided, masterMask is also required. The meaning of masterMask parameter is
depending on type of particular dofManager, and will be described in corresponding sections.

Supported DofManagerType keywords are

• Node record

Node coords #(ra) [lcs #(ra)]
Represent an abstraction for finite element node. The node coordinates in space (given by global coordinate
system) are described using coords attribute. This array contains x, y and possibly z (depends on problem
under consideration) coordinate of node. By default, the coordinate system in node is global coordinate system.
User defined local coordinate system in node is described using lcs array. This array contains six numbers,
where the first three numbers represent a directional vector of the local x-axis, and the next three numbers
represent a directional vector of the local y-axis. The local z-axis is determined using a vector product. A
right-hand coordinate system is assumed. If user defined local coordinate system in node is specified, then the
boundary conditions and applied loading are specified in this local coordinate system. The reactions and
displacements are also in lcs system at the output.

The node can create only master DOFs and SimpleSlave DOFs, so the allowable values of dofType array are
in range 0,1. For the Node dof manager, the masterMask is the array of size equal to number of DOFs, and
the i-th value determines the master dof manager, to which i-th dof is directly linked (the dof with same physical
meaning are linked together). The local coordinate system in node with same linked dofs is supported, but it
should be exactly the same as on master.

• Rigid arm record

RigidArmNode coords #(ra) master #(in) [masterMask #(ia)] [lcs #(ra)]
Represent node connected to other node (called master) using rigid arm. Rigid arm node DOFs can be linked to
master (via rigid arm transformation) or can be independent. The rigid arm node allows to avoid very stiff
elements used for modelling the rigid-arm connection. The rigid arm node maps its dofs to master dofs using
simple transformations (small rotations are assumed). Therefore, the contribution to rigid arm node can be
localized directly to master related equations. The rigid arm node can not have its own boundary or initial
conditions, they are determined completely from master dof conditions. Currently it is possible to map only
certain dofs - see dofType. Linked DOFs should have dofType value equal to 2, non-linked (primary) DOFs
0.

4.3. Dof manager records 23

OOFEM Input Manual, Release 1.0

Rigid arm node can be loaded independently of master. The node coordinates in space (given by global coor-
dinate system) are described using coords field. This array contains x, y and possibly z (depends on problem
under consideration) coordinate of node. The master parameter is the master node number, to which rigid
arm node dofs are mapped. The rigid arm node and master can have arbitrary local coordinate systems (if not
specified, global one is assumed).

The optional parameter masterMask allows to specify how particular mapped DOF depends on master DOFs.
The size of masterMask array should be equal to number of DOFs. For all linked DOFs (with corresponding
dofType value equal to 2) the corresponding value of masterMask array should be 1.

The local coordinate system in rigid arm node is supported, the coordinate system in master and slave can be
different. If no lcs is set, global one is assumed.the global cs applies.

• Hanging node

HangingNode coords #(ra) dofType #(in) [masterElement #(in)] [masterRegion
#(in)]

Hanging node is connected to an a master element using generalized interpolation. Hanging node posses no
degrees of freedom (except unlined dofs) - all values are interpolated from corresponding master elements and
its DOFs. arbitrary FE mesh of concrete specimen or to facilitate the local refinement of FE mesh. The hanging
nodes can be in a chain.

The contributions of hanging node are localized directly to master related equations. The hanging node can have
its own boundary or initial conditions, but only for primary unlinked DOFs. For linked DOFs, these conditions
are determined completely from master DOF conditions. The local coordinate system should be same for all
master nodes. The hanging node can be loaded independently of its master.

Values of array dofType can have following values: 0-primary DOF, 2-linked DOF.

The value of masterElement specifies the element number to which the hanging node is attached. The node
can be attached to any arbitrary coordinate within the master element. The element must support the necessary
interpolation classes. The same interpolation for unknowns and geometry is assumed.

The no (or -1) value for masterElement is supplied, then the node will locate the element closest to its
coordinate. If no (or zero) value for masterRegion is supplied, then all regions will be searched, otherwise
only the elements in cross section with number masterRegion. If masterElement is directly supplied
masterRegion is unused.

• Slave node

SlaveNode coords #(ra) dofType #(in) masterDofMan #(ia) weights #(ra)

Works identical to hanging node, but the weights (weights) are not computed from any element, but given
explicitly, as well as the connected dof managers (masterDMan).

• Element side

ElementSide

Represents an abstraction for element side, which holds some unknowns.

• PFEMParticle

PFEMParticle coords #(ra)

Represent the particle used in PFEM analysis.

24 Chapter 4. Domain record(s)

OOFEM Input Manual, Release 1.0

• InteractionPFEMParticle

InteractionPFEMParticle coords #(ra) bc #(ia) coupledNode #(in)

Represent a special particle used in the PFEM-part of the FluidStructureProblem. The particle is attached to
coupledNode from the structural counter part. InteractionBoundaryCondition (see interactionbc) must be
prescribed under bc to access the velocities from solid nodes.

4.4 Element records

These records specify a description of particular elements. The general format is following:

ElementType #(in) mat #(in) crossSect #(in) nodes #(ia) [bodyLoads #(ia)]
[boundaryLoads #(ia)] [activityltf #(in)] [lcs #(ra)] <[partitions #(ia)]> <[remote]>

The order of element records is optional, the element number is determined by #(in) parameter. The numbering of
individual elements is arbitrary, it could be even non-continuous. In this context, one could think of element number
as a label that is assigned to individual elements and by which the element is referenced.

Element material is described by parameter mat, which contains corresponding material record number. Element
cross section is determined by cross section with crossSect record number. Element dof managers (nodes, sides,
etc.) defining element geometry are specified using nodes array.

Body load acting on element is specified using bodyLoads array. Components of this array are corresponding load
record numbers. The loads should have the proper type (body load type), otherwise error will be generated.

Boundary load acting on element boundary is specified using boundaryLoads array. The format of this array is

2 · 𝑠𝑖𝑧𝑒 𝑙𝑛𝑢𝑚(1) 𝑖𝑑(1) . . . 𝑙𝑛𝑢𝑚(𝑠𝑖𝑧𝑒) 𝑖𝑑(𝑠𝑖𝑧𝑒),

where 𝑠𝑖𝑧𝑒 is total number of loadings applied to element, 𝑙𝑛𝑢𝑚(𝑖) is the applied load number, and 𝑖𝑑(𝑖) is the
corresponding entity number, to which the load is applied (for example a side or a surface number). The entity
numbering is element dependent and is described in element specific sections. The applied loads must be of proper
type (boundary load type), otherwise error is generated.

The support for element insertion and removal during the analysis is provided. One can specify optional time function
(identified by its id using activityltf parameter). The nonzero value of this time function indicates, whether the
element is active (nonzero value, the default) or inactive (zero value) at particulat solution step. Tested for structural
and transport elements. This feature allows considering temperature evolution of layered casting of concrete, where
certain layers needs to be inactive before they are cast. See a corresponding example in oofem tests how to enforce
hydrating material model, boundary conditions and element activity acting concurrently.

Orientation of local coordinates can be specified using lcs array. This array contains six numbers, where the first
three numbers represent a directional vector of local x-axis, and the next three numbers represent a directional vector
of local y-axis. The local z-axis is determined using the vector product. The lcs array on the element is particularly
useful for modeling of orthotropic materials which follow the element orientation. On a beam or truss element, the
lcs array has no effect and the 1D element orientation is aligned with the global 𝑥𝑥 component.

Available material models, their outline and corresponding parameters are described in separate Element Library
Manual.

4.5 Set records

Sets specify regions of the geometry as a combination of volumes, surfaces, edges, and nodes. The main usage of sets
are to connect regions of elements to a given cross section or apply a boundary condition, though sets can be used for

4.4. Element records 25

OOFEM Input Manual, Release 1.0

many other things as well.

Set #(in) [elements #(ia)] [elementranges #(rl)] [allElements] [nodes #(ia)]
[noderanges #(rl)] [allNodes] [elementboundaries #(ia)] [elementedges #(ia)]

Volumes (elements) and nodes can be specified using either a list, elements, nodes, or with a range list
elementranges, noderanges. Edges elementedges, and surfaces elementboundaries, are specified
in a interleaved list, every other number specifying the element, and edge/surface number (the total length of the list
being twice the number of surfaces/edges). The internal numbering of edges/surfaces is available in the Element
Library Manual.

Note that edge loads (singular loads given in “newton per length” (or equivalent), should be applied to
elementedges, surface loads “newton per area” on elementboundaries, and bulk loads “newton per volume”
on elements.

Example 1: A deadweight (gravity) load would be applied to the elements in a set, while a distributed line load
would be applied to the midline “edge” of the beam element, thus should be applied to a elementedges set. In the
latter case, the midline of the beam is defined as the first (and only) “edge” of the beam.

Example 2: Axisymmetric structural element analysis: A deadweight load would be applied to elements in a set.
A external pressure would be defined as a surface load an be applied to the elementboundaries in a set. The
element integrates the load (analytically) around the axis, so the load would still count as a surface load.

4.6 Cross section records

These records specify a cross section model descriptions. The general format is following:

CrossSectType #(in)

The order of particular cross section records is optional, cross section model number is determined by #(in) param-
eter. The numbering should start from one and should end at n, where n is the number of records.

The crossSectType keyword can be one from following possibilities

• Integral cross section with constant properties
SimpleCS [thick #(rn)] [width #(rn)] [area #(rn)] [iy #(rn)] [iz #(rn)] [ik #(rn)]
[shearareay #(rn)] [shearareaz #(rn)] beamshearcoeff #(rn)

Represents integral type of cross section model. In current implementation, such cross section is described
using cross section thick (thickVal) and width (widthVal). For some problems (for example 3d), the
corresponding volume and cross section dimensions are determined using element geometry, and then you can
omit some (or all) parameters (refer to documentation of individual elements for required cross section
properties). Parameter area allows to set cross section area, parameters iz, iz, and ik represent inertia
moment along y and z axis and Saint-Venant torsional constant. Parameter beamshearcoeff allows to set
shear correction factor, or equivalent shear areas (shearareay and shearareaz parameters) can be
provided. These cross section properties are assumed to be defined in local coordinate system of element.

• Integral cross section with variable properties
VariableCS [thick #(expr)] [width #(expr)] [area #(expr)] [iy #(expr)] [iz
#(expr)] [ik #(expr)] [shearareay #(expr)] [shearareaz #(expr)]
Represents integral type of cross section model, where individual cross section parameters can be expressed as
an arbitrary function of global coordinates x,y,z. Similar to SimpleCS, for some problems (for example 3d), the
corresponding volume and cross section dimensions are determined using element geometry, then you can omit
many (or some) parameters (refer to documentation of individual elements for required cross section
properties). Parameter area allows to set cross section area, parameters iz, iz, and ik represent inertia
moment along y and z axis and Saint-Venant torsional constant. Parameters (shearareay and
shearareaz determine shear area, which is required by beam and plate elements. All cross section
properties are assumed to be defined in local coordinate system of element.

26 Chapter 4. Domain record(s)

OOFEM Input Manual, Release 1.0

• Layered cross section
LayeredCS nLayers #(in) LayerMaterials #(ia) Thicks #(ra) Widths #(ra)
[midSurf #(rn)] [nintegrationpoints #(in)] [layerintegrationpoints #(ia)]
[beamshearcoeffxz #(rn)]
Represents the layered cross section model, based on geometrical hypothesis, that cross sections remain planar
after deformation. Number of layers is determined by nLayers parameter. Materials for each layer are
specified by LayerMaterials array. For each layer is necessary to input geometrical characteristic, thick -
using Thicks array, and width - using Widths array. Position of mid surface is determined by its distance
from bottom of cross section using midSurf parameter (normal and momentum forces are then computed
with regard to it’s position, by default it is located at average thickness position). The number of integration
points per layer can be specified using nintegrationpoints parameter, default is one integration point. It
is also possible to set up different number of integration points per individual layer using
layerintegrationpoints array, where its size should be equal to number of layers configured. The
layerintegrationspoints parameter overrides the nitengrationpoints setting. The Gauss
integration rule is used for setting up integration points in each layer.
The optional parameter beamshearcoeffxz allows to set shear correction factor for 2D beam sections,
controlling shear effective area used to evaluate shear force (default value is 1.0). Elements using this cross
section model must implement layered cross section extension. For information see element library manual.

• Fibered cross section
FiberedCS nfibers #(in) fibermaterials #(ia) thicks #(ra) widths #(ra) thick
#(rn) width #(rn) fiberycentrecoords #(ra) fiberzcentrecoords #(ra)

Cross section represented as a set of rectangular fibers. It is based on geometrical hypothesis, that cross
sections remain planar after deformation (3d generalization of layered approach for beams). Paramater
nfibers determines the number of fibers that together form the overall cross section. The model requires to
specify a material model corresponding to particular fiber using fibermaterials array. This array should
contain for each fibre corresponding material model number (the material model specified on element level has
no meaning in this particular case). The geometry of cross section is determined from fiber dimensions and
fiber positions, all input in local coordinate system of the beam (yz plane). The thick and width of each
fiber are determined using thicks and widths arrays. The overall thick and width are specified using
parameters thick and width. Positions of particular fibers are specified by providing coordinates of center
of each fiber using fiberycentrecoords array for y-coordinates and fiberzcentrecoords array for
z-coordinates.

• Warping cross section
WarpingCS WarpingNode #(in)

Represents the cross section for Free warping analysis, see section Free warping analysis. The
WarpingNode parametr defines the number of external node with prescribed boundary condition which
corresponds to the relative twist of warping cross section.

4.7 Material type records

These records specify a material model description. The general format is following:

MaterialType #(in) d #(rn)

The order of particular material records is optional, the material number is determined by #(in) parameter. The
numbering should start from one and should end at n, where n is the number of records. Material density is compulsory
parameter and it’s value is given by d parameter.

Available material models, their outline and corresponding parameters are described in separate Material Library
Manual.

4.7. Material type records 27

OOFEM Input Manual, Release 1.0

4.8 Nonlocal barrier records

Nonlocal material models of integral type are based on replacement of certain suitable local quantity in local consti-
tutive law by their nonlocal counterparts, that are obtained as weighted average over some characteristic volume. The
weighted average is computed as a sum of a remote value multiplied by weight function value. The weight function
typically depend on a distance between remote and receiver points and decreases with increasing distance. In some
cases, it is necessary to disregard mutual interaction between some points (for example if they are on the opposite sides
of a thin notch, which prevents the nonlocal interactions to take place). The barriers are the way how to introduce these
constrains. The barrier represent a curve (in 2D) or surface (in 3D). When the line connecting receiver and remote
point intersects a barrier, the barriers is activated and the corresponding interaction is not taken into account.

Currently, the supported barrier types are following:

• Polyline barrier

polylinebarrier #(in) vertexnodes #(ia) [xcoordindx #(in)] [ycoordindx #(in)]
This represents a polyline barrier for 2D problems. Barrier is a polyline, defined as a sequence of nodes
representing vertices. The vertices are specified using parameter vertexnodes array, which contains the
node numbers. The optional parameters xcoordindx and ycoordindx allow to select the plane (xy, yz, or
xz), where the barrier is defined. The xcoordindx is the first coordinate index, ycoordindx is the second.
The default values are 1 for xcoordindx and 2 for ycoordindx, representing barrier in xy plane.

• Symmetry barrier

symmetrybarrier #(in) origin #(ra) normals #(ra) activemask #(ia)

Implementation of symmetry barier, that allows to specify up to three planes (orthogonal ones) of symmetry.
This barrier allows to model the symmetry of the averaged field on the boundary without the need of modeling
the other part of structure across the plane of symmetry. It is based on modifying the integration weights of
source points to take into account the symmetry. The potential symmetry planes are determined by specifying
orthogonal right-handed coordinate system, where axes represent the normals of corresponding symmetry
planes. Parameter origin determines the origin of the coordinate system, the normals array contains three
components of x-axis direction vector, followed by three components of y-axis direction vector (expressed in
global coordinate system). The z-axis is determined from the orthogonality conditions. Parameter
activemask allows to specify active symmetry planes; i-th nonzero value activates the symmetry barrier for
plane with normal determined by corresponding coordinate axis (x=1, y=2, z=3).

4.9 Load and boundary conditions

These records specify description of boundary conditions. The general format is following:

EntType #(in) loadTimeFunction #(in) [valType #(in)] [dofs #(ia)]
[isImposedTimeFunction #(in)]

The order of particular records is optional, boundary condition number is determined by #(in) parameter. The
numbering should start from one and should end at n, where n is the number of records. Time function value (given by
loadTimeFunction parameter) is a multiplier, using which each component (value of loading or value of boundary
condition) describes its time variation. The optional parameter valType allows to determine the physical meaning
of bc value, which is sometimes required. Supported values are (1 - temperature, 2 - force/traction, 3 - pressure, 4
- humudity, 5 - velocity, 6 - displacement). Another optional parameter dofs is used to determine which dofs the
boundary condition should act upon. It is not relevant for all BCs..

28 Chapter 4. Domain record(s)

OOFEM Input Manual, Release 1.0

The nonzero value of isImposedTimeFunction time function indicates that given boundary condition is active,
zero value indicates not active boundary condition in given time (the bc does not exist). By default, the boundary
condition applies at any time.

Currently, EntType keyword can be one from

• Dirichlet boundary condition

BoundaryCondition prescribedvalue #(rn) [d #(rn)]

Represents boundary condition. Prescribed value is specified using prescribedvalue parameter. The phys-
ical meaning of value is fully determined by corresponding DOF. Optionally, the prescribed value can be speci-
fied using d parameter. It is introduced for compatibility reasons. If prescribedvalue is specified, then d
is ignored.

• Prescribed gradient boundary condition (Dirichlet type)

PrescribedGradient gradient #(rm) [cCoords #(ra)]

Prescribes 𝑣𝑖 = 𝑑𝑖𝑗(𝑥𝑗 − �̄�𝑗) or 𝑠 = 𝑑1𝑗(𝑥𝑗 − �̄�𝑗) where 𝑣𝑖 are primary unknowns, 𝑥𝑗 is the coordinate of the
node, �̄� is cCoords and 𝑑 is gradient. The parameter cCoords defaults to zero. This is typical boundary
condition in multiscale analysis where 𝑑 = 𝜕𝑥𝑠 would a macroscopic gradient at the integration point, i.e. this is
a boundary condition for prolongation. It is also convenient to use when one wants to test a arbitrary specimen
for shear.

• Mixed prescribed gradient / pressure boundary condition (Active type)

MixedGradientPressure devGradient #(ra) pressure #(rn) [cCoord #(ra)]

All boundary conditions of ensures that the deviatoric gradient and pressure is at least weakly fullfilled on
the prescribed domain. They are used for computational homogenization of incompressible flow or elasticity
problems.

• Mixed prescribed gradient / pressure boundary condition (Weakly periodic type)

MixedGradientPressureWeaklyPeriodic order #(rn)

Prescribes a periodic constant (unknown) stress tensor along the specified boundaries. For order set to 1, one
obtains the same results as the Neumann boundary condition.

• Mixed prescribed gradient / pressure boundary condition (Neumann type)

MixedGradientPressureNeumann

Prescribes a constant (unknown) deviatoric stress tensor along the specified boundaries. Additional unknowns
appears, 𝜎dev, which is handled by the boundary condition itself (no control from the input file). The input dev-
Gradient is weakly fulfilled (homogenized over the elementsides). As with the the Dirichlet type, the volumetric
gradient is free. This is useful in multiscale computations of RVE’s that experience incompressible behavior,
typically fluid problems. In that case, the element sides should cover the entire RVE boundary. It is also conve-
nient to use when one wants to test a arbitrary specimen for shear, with a free volumetric part (in which case the
pressure is set to zero). Symmetry is not assumed, so rigid body rotations are removed, but translations need to
be prescribed separately.

• Mixed prescribed gradient / pressure boundary condition (Dirichlet type)

MixedGradientPressureDirichlet

Prescribes 𝑣𝑖 = 𝑑dev,𝑖𝑗(𝑥𝑗 − �̄�𝑗) + 𝑑vol(𝑥𝑖 − �̄�𝑖), and a pressure 𝑝. where 𝑣𝑖 are primary unknowns, 𝑥𝑗 is the
coordinate of the node, �̄� is cCoords and 𝑑dev is devGradient. The parameter cCoords defaults to zero.
An additional unknown appears, 𝑑vol, which is handled by the boundary condition itself (no control from the
input file). This unknown is in a way related to the applied pressure. This is useful in multiscale computations
of RVE’s that experience incompressible behavior, typically fluid problems. It is also convenient to use when

4.9. Load and boundary conditions 29

OOFEM Input Manual, Release 1.0

one wants to test a arbitrary specimen for shear, with a free volumetric part (in which case the pressure is set to
zero).

• Nodal fluxes (loads) NodalLoad components #(ra) [cstype #(in)] Concentrated nodal load. The
components of nodal load vector are given by components parameter. The size of this vector corresponds to
a total number of nodal DOFs, and i-th value corresponds to i-th DOF in associated dof manager. The load can
be defined in global coordinate system (cstype = 0) or in entity - specific local coordinate system (cstype =
1, default).

• PrescribedTractionPressureBC

Represents pressure boundary condition (of Dirichlet type) due to prescribed tractions. In CBS algorithm for-
mulation the prescribed traction boundary condition leads indirectly to pressure boundary condition in corre-
sponding nodes. This boundary condition implements this pressure bc. The value of bc is determined from
applied tractions, that should be specified on element edges/surfaces using suitable boundary loads.

• Linear constraint boundary condition

LinearConstraintBC weights #(ra) [weightsLtf #(ia)] dofmans #(in) dofs
#(in) rhs #(rn) [rhsLtf #(in)] lhstype #(ia) rhsType #(ia)

This boundary condition implements a linear constraint in the form
∑︀

𝑖 𝑤𝑖𝑟𝑖 = 𝑐, where 𝑟𝑖 are
unknowns related to DOFs determined by dofmans and dofs, the weights are determined by
weights and weightsLtf. The constant is determined by rhs and rhsLtf parameters. This
boundary condition is introduced as additional stationary condition using Lagrange multiplier, which
is an additional degree of freedom introduced by this boundary condition.

The individual DOFs are determined using dof manager numbers (dofmans array) and correspond-
ing DOF indices (dofs). The weights corresponding to participating DOFs are specified using
weights array. The weights are multiplied by value returned by load time function, associated
to individual weight using optional weightsLtf array. By default, all weights are set to 1. The
constant 𝑐 is determined by rhs parameter and it is multiplied by the value of load time function,
specified using rhsLtf parameter, or by 1 by default. The characteristic component, to which this
boundary condition contributes must be identified using lhstype and rhsType parameters, val-
ues of which are corresponding to CharType enum. The left hand side contribution is assembled
into terms identified by lhstype. The rhs contribution is assembled into the term identified by
rhsType parameter. Note, that multiple values are allowed, this allows to select all variants of
stifness matrix, for example. Note, that the size of dofmans, dofs, weights, weightsLtf
arrays should be equal.

• InteractionBoundaryCondition

InteractionBoundaryCondition

Is a special boundary condition prescribed on InteractionPFEMParticles (see interactionparticle in the PFEM
part of the FluidStructureProblem. This sort of particles is regarded as it would have prescribed velocities, but
the values change dynamically, as the solid part deforms. The velocities are obtained from coupled structural
nodes.

• Body loads

– Volume flux (load)

DeadWeight components #(ra)

Represents dead weight loading applied on element volume (for structural elements). For transport
problems, it represents the internal source, i.e. the rate of (heat) generated per unit volume. The
magnitude of load for specific i-th DOF is computed as product of material density, corresponding
volume and i-th member of components array.

30 Chapter 4. Domain record(s)

OOFEM Input Manual, Release 1.0

– Structural temperature load

StructTemperatureLoad components #(ra)

Represents temperature loading imposed to some elements. The members of components array rep-
resent the change of temperature (or change of temperature gradient) corresponding to specific element
strain components. See element library manual for details.

– Structural eigenstrain load StructEigenstrainLoad components #(ra)

Prescribes eigenstrain (or stress-free strain) to a structural element. The array of components is de-
fined in the global coordinate system. The number of components corresponds to a material mode,
e.g. plane stress has three components and 3D six. Periodic boundary conditions can be imposed us-
ing eigenstrains and master-slave nodes. Consider decomposition of strain into average and fluctuating par
.. math:: boldsymbol{varepsilon}(boldsymbol{x}) = langle boldsymbol{varepsilon} rangle + boldsym-
bol{varepsilon}^*(boldsymbol{x})

where ⟨𝜀⟩ can be imposed as eigenstrain over the domain and the solution gives the fluctuating part 𝜀*(𝑥).
Master-slave nodes have to interconnect opposing boundary nodes of a unit cell.

• Boundary loads - Constant edge fluxes (load)

ConstantEdgeLoad loadType #(in) components #(ra)
[dofexcludemask #(ia)] [csType #(in)] [properties #(dc)]
[propertytf #(dc)]

– Constant surface fluxes (load)

ConstantSurfaceLoad loadType #(in) components #(ra)
[dofexcludemask #(ia)] [csType #(in)] [properties #(dc)] [propertytf
#(dc)]

Represent constant edge/surface loads or boundary conditions. Parameter loadType distin-
guishes the type of boundary condition. Supported values are specified in bctype.h:

* loadType = 2 prescribed flux input (Neumann boundary condition),

* loadType = 3 uniform distributed load or the convection (Newton) BC. Parameter
components contains the environmental values (temperature of the environment) cor-
responding to element unknowns, and properties dictionary should contain value of
transfer (convection) coefficient (assumed to be a constant) under the key ’a’,

* loadType = 7 specifies radiative boundary condition (Stefan-Boltzmann). It requires
to specify emmisivity 𝜀 ∈ ⟨0, 1⟩, the components array contains the environmental
values (temperature of the environment). Default units are Celsius. Optional parameter
temperOffset = 0 can be used to calculate in Kelvin.

If the boundary condition corresponds to distributed force load, the components array con-
tains components of distributed load corresponding to element unknowns. The load is specified
for all DOFs of object to which is associated. For some types of boundary conditions the zero
value of load does not mean that the load is not applied (Newton’s type of bc, for example).
Then some mask, which allows to exclude specific dofs is necessary. The dofexcludemask
parameter is introduced to alow this. It should have the same size as components array, and
by default is filled with zeroes. If some value of dofExcludeMask is set to nonzero, then the
corresponding componentArray is set to zero and load is not applied for this DOF. If the bound-
ary condition corresponds to prescribed flux input, then the components array contains the
components of prescribed input flux corresponding to element unknowns.

The properties can vary in time. Each property can have associated time function which deter-
mines its time variation. The time functions are set up using optional propertytf dictionary,
containing for selected properties the corresponding time function number. The time function

4.9. Load and boundary conditions 31

OOFEM Input Manual, Release 1.0

must be registered under the same key as in properties dictionary. The property value is
then computed by product of property value (determined by properties) and corresponding
time function evaluated at given time. If no time function provided for particula property, a unit
constant function is assumed.

The load can be defined in global coordinate system (csType = 0, default) or in entity - specific
local coordinate system (csType = 1).

– Linear edge flux (load)

LinearEdgeLoad loadType #(in) components #(ra) [dofexcludemask #(ia)]
[csType #(in)]

Represents linear edge load. The meanings of parameters csType and loadType are the same as for
ConstantEdgeLoad. In components array are stored load components for corresponding unknowns
at the beginning of edge, followed by values valid for end of edge. The load can be defined in global
coordinate system (csType = 0, default) or in entity - specific local coordinate system (csType = 1).

– InteractionLoad

InteractionLoad ndofs #(in) loadType #(in) Components #(ra) [csType #(in)]
coupledparticles #(ia)

Represents a fluid pressure induced load in the solid part of the FluidStructureProblem. The meanings of
parameters ndofs, csType, and loadType are the same as for LinearEdgeLoad. In Components
array are stored load components for corresponding unknowns at the beginning of edge (ndofs values),
followed by values valid for end of edge (ndofs values). The load should be defined in global coordinate
system (csType = 0) as it acts in normal direction of the edge. Array coupledparticles assign
PFEMParticles from the fluid part of the problem providing fluid pressure.

4.10 Initial conditions

These records specify description of initial conditions. The general format is following:

InitialCondition #(in) conditions #(dc) The order of particular records is optional, load, boundary or
initial condition number is determined by (num#)(in) parameter. The numbering should start from one and should end
at n, where n is the number of records. Initial parameters are listed in conditions dictionary using keys followed
by their initial values. Now ’v’ key represents velocity and ’a’ key represents acceleration.

4.11 Time functions records

These records specify description of time functions, which generally describe time variation of components during
solution. The general format is following:

TimeFunctType #(in) [initialValue #(rn)]

The order of these records is optional, time function number is determined by #(in) parameter. The
initialValue parameter allows to control the way, how increment of receiver is evaluated for the first solution
step. This first solution step increment is evaluated as the difference of value of receiver at this first step and given ini-
tial value (which is by default set to zero). The increments of receiver in subsequent steps are computed as a difference
between receiver evaluated at given solution step and in previous step.

The numbering should start from one and should end at n, where n is the number of records.

Currently, TimeFunctType keyword can be one from

32 Chapter 4. Domain record(s)

OOFEM Input Manual, Release 1.0

• Constant function

ConstantFunction f(t) #(rn)

Represents the constant time function, with value f(t).

• Peak function

PeakFunction t #(rn) f(t) #(rn)

Represents peak time function. If time is equal to t value, then the value of time function is given by f(t)
value, otherwise zero value is returned.

• Piecewise function

PiecewiseLinFunction [nPoints #(in) t #(ra) f(t) #(ra)] [datafile #("string")]

Represents the piecewise time function. The particular time values in t array should be sorted according to
time scale. Corresponding time function values are in f(t) array. Value for time, which is not present in t is
computed using liner interpolation scheme. Number of time-value pairs is in nPoints parameter.

The second alternative allows reading input data from an external ASCII file. A hash commented line (#) is
skipped during reading. File name should be eclosed with ” “.

• Heaviside-like time function

HeavisideLTF origin #(rn) value #(rn)

Up to time, given by parameter origin, the value of time function is zero. If time greater than origin
parameter, the value is equal to parameter value value.

• User defined

UsrDefLTF f(t) #(expr) [dfdt(t) #(expr)] [d2fdt2(t) #(expr)]

Represents user defined time function. The expressions can depend on “t” parameter, for which actual time will
be substituted and expression evaluated. The function is defined using f(t) parameter, and optionally, its first
and second time derivatives using dfdt(t) and d2fdt2(t) parameters. The first and second derivatives
may be required, this depend on type of analysis.

Very general, but relatively slow.

4.12 Xfem manager record and associated records

This record specifies the number of enrichment items and simulation options common for all enrichment items.
Functions used for enrichment (e.g. Heaviside, abs or branch functions) are not specified here, they are specified for
each enrichment item separately. The same holds for the geometrical representation of each enrichment item (e.g. a
polygon line or a circle). Currently, OOFEM supports XFEM simulations of cracks and material interfaces in 2D.
The input format for the XFEM manager is:
XfemManager numberofenrichmentitems #(in) numberofgppertri #(in) debugvtk #(in)
vtkexport #(in) exportfields #(in)

where numberofenrichmentitems represents number of enrichment items,
numberofgppertri denotes the number of Gauss points in each subtriangle of a cut element
(default 12) and debugvtk controls if additional debug vtk files should be written (1 activates the
option, 0 is default).

The specification of an enrichment item may consist of several lines, see e.g. the test sm/xFemCrackValBranch.in.
First, the enrichment item type is specified together with some optional parameters according to

4.12. Xfem manager record and associated records 33

OOFEM Input Manual, Release 1.0

EntType #(in) enrichmentfront #(in) propagationlaw #(in)

where enrichmentfront specifies an enrichment front (we may for example employ branch functions
at a crack tip and Heaviside enrichment along the rest of the crack, hence the “front” of the enrichment
is treated separately) and propagationlaw specifies a rule for crack propagation (this feature is still
highly experimental though). Specification of an enrichmentfront and a propagationlaw is
optional.

The next line specifies the enrichment function to be used:
EntType #(in)

This is followed by a line specifying the geometric description (e.g. a polygon line or a circle) according to
EntType #(in) extra attributes where the number and type of extra attributes to specify will vary
depending on the geometry chosen, e.g. center and radius for a circle or a number of points for a polygon line.

If an enrichment front was specified previously, the type and properties of the enrichment front are specified on the
next line according to
EntType #(in) extra attributes

If a propagation law was specified previously, it’s type and properties are also specified on a separate line according to
EntType #(in) extra attributes

34 Chapter 4. Domain record(s)

CHAPTER

FIVE

APPENDIX

5.1 Sparse linear solver parameters

The sparselinsolverparams field has the following general syntax:
[lstype #(in)] [smtype #(in)] solverParams #(string)

where parameter lstype allows to select the solver for the linear system of equations. Currently supported val-
ues are 0 (default) for a direct solver (ST_Direct), 1 for an Iterative Method Library (IML) solver (ST_IML), 2 for
a Spooles direct solver, 3 for Petsc library family of solvers, and 4 for a DirectSparseSolver (ST_DSS). Parame-
ter smtype allows to select the sparse matrix storage scheme. The scheme should be compatible with the solver
type. Currently supported values (marked as “id”) are summarized in table Solver and storage scheme compati-
bility.. The 0 value is default and selects the symmetric skyline (SMT_Skyline). Possible storage formats include
unsymmetric skyline (SMT_SkylineU), compressed column (SMT_CompCol), dynamically growing compressed col-
umn (SMT_DynCompCol), symmetric compressed column (SMT_SymCompCol), spooles library storage format
(SMT_SpoolesMtrx), PETSc library matrix representation (SMT_PetscMtrx, a sparse serial/parallel matrix in AIJ
format), and DSS compatible matrix representations (SMT_DSS). The allowed lstype and smtype combinations
are summarized in the table Solver and storage scheme compatibility., together with solver parameters related to spe-
cific solver.

35

OOFEM Input Manual, Release 1.0

Ta
bl

e
1:

So
lv

er
an

d
st

or
ag

e
sc

he
m

e
co

m
pa

tib
ili

ty
.

S
to

ra
ge

fo
rm

at
s
m
t
y
p
e

i
d

l
s
t
y
p
e

(
i
d
)

id
D

ir
ec

t(
0)

IM
L

(1
)

Sp
oo

le
s

(2
)

Pe
ts

c
(3

)
D

SS
(4

)
M

K
L

Pa
rd

is
o

(6
)

Pa
r-

di
so

.o
rg

(8
)

Su
pe

rL
U

_M
T

(7
)

SM
T

_S
ky

lin
e

0
•

•

SM
T

_S
ky

lin
eU

1
•

•

SM
T

_C
om

pC
ol

2
•

•
•

SM
T

_D
yn

C
om

pC
ol3

•

SM
T

_S
ym

C
om

pC
ol4

•

SM
T

_D
yn

C
om

pR
ow5

•

SM
T

_S
po

ol
es

M
tr

x6
•

SM
T

_P
et

sc
M

tr
x

7
•

SM
T

_D
SS

_s
ym

_L
D

L
8

•

SM
T

_D
SS

_s
ym

_L
L9

•

SM
T

_D
SS

_u
ns

ym
_L

U
10

•

36 Chapter 5. Appendix

OOFEM Input Manual, Release 1.0

The solver parameters in solverParams depend on the solver type and are summarized in table (sparsesolver-
params).

Table 2: Solver parameters.
Solver type id Solver parameters/notes
ST_Direct 0
ST_IML 1 [stype #(in)] lstol #(rn) lsiter #(in)lsprecond #(in)

[precondattributes #(string)]
Included in OOFEM, requires to compile with USE_IML

ST_Spooles 2 [msglvl #(in)] [msgfile #(s)]
http://www.netlib.org/linalg/spooles/spooles.2.2.html

ST_Petsc 3 See Petsc manual, for details
ST_DSS 4 Sparse direct solver, included in OOFEM

Requires to compile with USE_DSS
ST_MKLPardiso 6 Requires Intel MKL Pardiso
ST_SuperLU_MT 7 SuperLU for shared memory machines

http://crd-legacy.lbl.gov/ xiaoye/SuperLU/
ST_PardisoProjectOrg 8 Requires Pardiso solver(http://www.pardiso-project.org/)

In case of ST_PETSC, the user can set several run-time options, e.g., -ksp_type [cg, gmres, bicg,
bcgs] -pc_type [jacobi, bjacobi,none,ilu,...] -ksp_monitor -ksp_rtol #
-ksp_view -ksp_converged_reason. These options will override those that are default (PETSC
KSPSetFromOptions() routine is called after any other customization routines).}

The stype allows to select particular iterative solver from IML library, currently supported values are 0 (default) for
Conjugate-Gradient solver, 1 for GMRES solver. Parameter lstol represents the maximum value of residual after
the final iteration and the lsiter is maximum number of iteration for iterative solver. The precondattributes
parameters contains the optional preconditioner parameters. The lsprecond parameter determines the type of pre-
conditioner to be used. The possible values of lsprecond together with supported storage schemes and their de-
scriptions are summarized in table Preconditioning summary..

Table 3: Preconditioning summary.
Precond type id Compatible storage Description and parameters
IML_VoidPrec 0 all No preconditioning
IML_DiagPrec 1 all Diagonal preconditioning
IML_ILUPrec 2 SMT_CompCol Incomplete LU Decomposition

SMT_DynCompCol with no fill up
IML_ILUPrec 3 SMT_DynCompRow Incomplete LU (ILUT) with

fillup.
The precondattributes are:
[droptol #(rn)] [partfill #(in)].
droptol dropping tolerance
partfill level of fill-up

IML_ICPrec 4 SMT_SymCompCol Incomplete Cholesky
SMT_CompCol with no fill up

5.2 Eigen value solvers

The eigensolverparams field has the following general syntax:
stype #(in) [smtype #(in)] solverParams #(string) where parameter stype allows to select
solver type. Parameter smtype allows to select sparse matrix storage scheme. The scheme should be compatible

5.2. Eigen value solvers 37

http://www.netlib.org/linalg/spooles/spooles.2.2.html
http://crd-legacy.lbl.gov/
http://www.pardiso-project.org/

OOFEM Input Manual, Release 1.0

with solver type. Currently supported values of stype are summarized in table Eigen Solver parameters..

Table 4: Eigen Solver parameters.
Solver type stype id solver parameters
Subspace Iteration 0 (default)
Inverse Iteration 1
SLEPc solver 2 requires “smtype 7” see also SLEPc manual

There are in general two basic factors causing load imbalance between individual subdomains: (i) one comming from
application nature, such as switching from linear to nonlinear response in certain regions or local adaptive refinment,
and (ii) external factors, caused by resourse realocation, typical for nondedicated cluster environments, where
indivudual processors are shared by different applications and users, leading to time variation in allocated processing
power. The load balance recovery is achieved by repartitioning of the problem domain and transferring the work
(represented typically by finite elements) from one subdomain to another. This section describes the structure and
syntax of parameters related to dynamic load balancing. The corresponding part of analysis record has the following
general syntax:
[lbflag #(in)] [forcelb1 #(in)] [wtp #(ia)] [lbstep #(in)] [relwct #(rn)] [abswct
#(rn)] [minwct #(rn)]

where the parameters have following meaning:

• lbflag, when set to nonzero value activates the dynamic load balancing. Default value is zero.

• forcelb1 forces the load rebalancing after the first solution step, when set to nonzero value.

• wtp allows to activate optional load balancing plugins. At present, the only supported value is 1, that activates
nonlocal plugin, necessary for nonlocal averaging to work properly when dynamic load balancing is active.

• lbstep rebalancing, if needed, is performed only every lbstep solution step. Default value is 1 (recover balance
after every step, if necessary).

• relwcr sets relative wall-clock imbalance treshold. When achieved relative imbalance between wall clock
solution time of individual processors is greater than provided treshold, the rebalancing procedure will be acti-
vated.

• abswct sets absolute wall-clock imbalance treshold. When achieved absolute imbalance between wall clock
solution time of individual processors is greater than provided treshold, the rebalancing procedure will be acti-
vated.

• minwct minimum absolute imbalance to perform relative imbalance check using relwcr parameter, other-
wise only absolute check is done. Default value is 0.

At present, the load balancing support requires ParMETIS module to be configured and compiled.

5.3 Error estimators and indicators

The currently supported values of eetype are in table Supported error estimators and indicators..

• EET_SEI - Represents scalar error indicator. It indicates element error based on the value of some suitable
scalar value (for example damage level, plastic strain level) obtained from the element integration points and
corresponding material model.

38 Chapter 5. Appendix

OOFEM Input Manual, Release 1.0

• EET_ZZEE - The implementation of Zienkiewicz Zhu Error Estimator. It requires the special element algo-
rithms, which may not be available for all element types.

Please note, that in the actual version, the error on the element level is evaluated using default integration rule.
For example, in case of ZZ error estimator, the error (L2 or energy norm) is evaluated from the difference of
computed and “recovered” stresses, which are approximated using the same interpolation functions as displace-
ments). Therefore, in many cases, the default integration rule order is not sufficient and higher integration must
be used on elements (consult element library manual and related NIP parameter).

• EET_CZZSI - The implementation of combined criteria: Zienkiewicz Zhu Error Estimator for elastic regime
and scalar error indicator in non-linear regime.

Table 5: Supported error estimators and indicators.
Error estimator/indicator eetype
EET_SEI 0
EET_ZZEE 1
EET_CZZSI 2

The sets of parameters (errorestimatorparams field) used to configure each error estimator are different

• EET_SEI

[regionskipmap #(ia)] vartype #(in) minlim #(rn) maxlim #(rn) mindens #(rn)
maxdens #(rn) defdens #(rn) [remeshingdensityratio #(rn)]

– regionskipmap parameter allows to skip some regions. The error is not evaluated in these regions and
default mesh density is used. The size of this array should be equal to number of regions and nonzero entry
indicates region to skip.

– vartype parameter determines the type of internal variable to be used as error indicator. Currently
supported value is 1, representing damage based indicator.

– If the indicator value is in range given by parameters (minlim, maxlim) then the proposed mesh density
is linearly interpolated within range given by parameters (mindens, maxdens). If indicator value is less
than value of minlim parameter then value of defdens parameter is used as required density, if it is
larger than maxlim then maxdens is used as required density.

– remeshingdensityratio parameter determines the allowed ratio between proposed density and ac-
tual density. The remeshing is forced, whenever the actual ratio is smaller than this value. Default value is
equal to 0.80.

• EET_ZZEE

[regionskipmap #(ia)] normtype #(in) requirederror #(rn) minelemsize #(rn)

– regionskipmap parameter allows to skip some regions. The error is not evaluated in these regions and
default mesh density is used. The size of this array should be equal to number of regions and nonzero entry
indicates region to skip.

– normtype Allows select the type of norm used in evaluation of error. Default value is to use L2 norm
(equal to 0), value equal to 1 uses the energy norm.

– requirederror parameter determines the required error to obtain (in percents/100).

– minelemsize parameter allows to set minimum limit on element size.

• EET_CZZSI - combination of parameters for EET_SEI and EET_ZZEE; the in elastic regions are driven using
EET_SEI, the elastic are driven by EET_ZZEE.

5.3. Error estimators and indicators 39

OOFEM Input Manual, Release 1.0

5.4 Material interfaces

The material interfaces are used to represent and track the position of various interfaces on fixed grids. Typical
examples include free surface, evolving interface between two materials, etc. Available representations include:

MI miflag Compatibility
LEPlic 0 2D triangular
LevelSet 1 2D triangular

• LEPlic- representation based on Volume-Of-Fluid approach; the initial distribution of VOF fractions should be
specified for each element (see element manual)
[refvol #(rn)]

– parameter refvol allows to set initial volume of reference fluid, then the reference volume is computed
in each step and printed, so the accuracy and mass conservation can be monitored.

• LevelSet- level set based representation
levelset #(ra) OR refmatpolyx #(ra) refmatpolyy #(ra)

[lsra #(in)] [rdt #(rn)] [rerr #(rn)]

– levelset allows to specify the initial level set values for all nodes directly. The size should be equal to
total number of nodes within the domain.

– Parameters refmatpolyx and refmatpolyy allow to initialize level set by specifying interface geom-
etry as 2d polygon. Then polygon describes the initial zero level set, and level set values are then defined
as signed distance from this polygon. Positive values are on the left side when walking along polygon. The
parameter refmatpolyx specifies the x-coordinates of polygon vertices, parameter refmatpolyy y-
corrdinates. Please note, that level set must be initialized, either using levelset parameter or using
refmatpolyx and refmatpolyy.

– Parameter lsra allows to select level set reinitialization algorithm. Currently supported values are 0 (no
re-initialization), 1 (re-initializes the level set representation by solving 𝑑𝜏 = 𝑆(𝜑)(1 − |∇𝑑|) to steady
state, default), 2 (uses fast marching method to build signed distance level set representation).

– Parameters rdt rerr are used to control reinitialization algorithm for lsra = 0. rdt allows to change
time step of integration algorithm and parameter rerr allows to change default error limit used to detect
steady state.

5.5 Mesh generator interfaces

The mesh generator interface is responsible to provide a link to specific mesh generator. The supported values of
meshpackage parameter are

• MPT_T3D: meshpackage = 0. T3d mesh interface. Default. Supports both 1d, 2d (triangles) and 3d (tetra-
hedras) meshes. Reliable.

• MPT_TARGE2: meshpackage = 1. Interface to Targe2 2D mesh generator.

• MPT_SUBDIVISION: meshpackage=3. Built-in subdivision algorithm. Supports triangular 2D and tetrahe-
dral 3D meshes. Can operate in parallel mode.

40 Chapter 5. Appendix

OOFEM Input Manual, Release 1.0

5.6 Initialization modules

Initialization modules allow to initialize the state variables using data previously computed by external software. The
number of initialization module records is specified in analysis record using ninitmodules parameter (see the
initial part of section Analysis record. The general format is the following:

EntType initfile #(string) The file name following the keyword “initfile” specifies the path to the file that
contains the initialization data and should be given without quotes.

Currently, the only supported initialization module is

• Gauss point initialization module

GPInitModule initfile #(string)

- Each Gauss point is represented by one line in the initialization file.
- The Gauss points should be given in a specific order, based on the element number and the Gauss point
number, in agreement with the mesh specified in later sections.

|- Each line referring to a Gauss point should contain the following data:

elnum #(in) gpnum #(in) coords #(ra) ng #(in) var_1_id #(in)
values_1 #(ra) ... var_ng_id #(in) values_ng #(ra)

– elnum is the element number

– gpnum is the Gauss point number

– coords are the coordinates of the Gauss point

– ng is the number of groups of variables that will follow

– var_1_id is the identification number of variable group number 1 (according to the definitions
in internalstatetype.h)

– values_1 are the values of variables in group number 1

– var_ng_id is the identification number of variable group number ng

– values_ng are the values of variables in group number ng

– Example:
37 4 3 0.02 0.04 0.05 3 52 1 0.23 62 1 0.049 1 6 0 -2.08e+07 0 0 0
0 means that Gauss point number 4 of element number 37 has coordinates 𝑥 = 0.02, 𝑦 = 0.04 and
𝑧 = 0.05 and the initial values are specified for 3 groups of variables; the first group (variable ID
52) is of type IST_DamageScalar (see internalstatetype.h) and contains 1 variable (since it is a
scalar) with value 0.23; the second group (ID 62) is of type IST_CumPlasticStrain and contains 1
variable with value 0.049; the third group is of type IST_StressTensor and contains 6 variables
(stress components 𝜎𝑥, 𝜎𝑦 , etc.) with values 0, -2.08e+07, 0, 0, 0, 0

5.6. Initialization modules 41

OOFEM Input Manual, Release 1.0

5.7 Export modules

Export modules allow to export computed data into external software for post-processing. The number of export
module records is specified in analysis record using nmodules parameter (see the initial part of section
AnalysisRecord_. The general format is the following:
EntType [tstep_all] [tstep_step #(in)] [tsteps_out #(rl)] [subtsteps_out #(in)]
[domain_all] [domain_mask #(in)] [regionsets #(ia)] [timeScale #(rn)]

To select all solution steps, in which output will be performed, use tstep_all. To select each tstep_step-nth
step, use tstep_step parameter. In order to select only specific solution steps, the tsteps_out list can be
specified, supplying solution step number list in which output will be done. To select output for all domain of the
problem the domain_all keyword can be used. To select only specific domains, domain_mask array can be
used, where the values of the array specify the domain numbers to be exported. If the parameter subtsteps_out
= 1, it turns on the export of intermediate results, for example during the substepping or individual equilibrium
iterations. This option requires support from the solver.

The export is done on region basis, on each region, the nodal recovery is performed independently and results are
exported in a separate piece. This allows to take into account for discntinuities, or to export variables defined
only by particular material model. The region volumes are defined using sets containing individual elements.
By default the one region is created, containing all element in the problem domain. The optional parameter
regionsets allows to use user-defined. The individual values refer to numbers (ids) of domain sets. Note,
that regions are determined solely using elements.

vtkxml tstep_all cellvars 1 46 vars 1 1 primvars 1 1 stype 2 regionsets 2 1 2

Optional parameter timeScale scales time in output. In transport problem, basic units are seconds. Setting
timeScale = 2.777777e-4 (=1/3600.) converts all time data in vtkXML from seconds to hours.

Currently, the supported export modules are following

• VTK export, DEPRECATED - Use VTKXML

vtk [vars #(ia)] [primvars #(ia)] [cellvars #(ia)] [stype #(in)] [regionstoskip
#(ia)]

vtkxml [vars #(ia)] [primvars #(ia)] [cellvars #(ia)] [ipvars #(ia)] [stype
#(in)]

– The vtk module is obsolete, use vtkxml instead. Vtkxml allows to export results recovered on region by
region basis and has more features.

– The array vars contains identifiers for those internal variables which are to be exported. These variables
will be smoothed and transfered to nodes. The id values are defined by InternalStateType enumeration,
which is defined in include file “src/oofemlib/internalstatetype.h”.

– The array primvars contains identifiers of primary variables to be exported. The possible
values correspond to the values of enumerated type UnknownType, which is again defined in
“src/oofemlib/unknowntype.h”. Please note, that the values corresponding to enumerated type values start
from zero, if not specified directly and that not all values are supported by particular material model or
analysis type.

– The array cellvars contains identifiers of constant variables defined on an element (cell), e.g. a material
number. Identifier numbers are specified in “src/oofemlib/internalstatetype.h”.

– The array ipvars contains identifiers for those internal variables which are to be exported. These vari-
ables will be directly exported (no smoothing) as point dataset, where each point corresponds to individual

42 Chapter 5. Appendix

OOFEM Input Manual, Release 1.0

integration point. A separate vtu file for these raw, point data will be created. The id values are defined by
InternalStateType enumeration, which is defined in include file “src/oofemlib/internalstatetype.h”.

– The parameter stype allows to select smoothing procedure for internal variables, which is used to com-
pute nodal values from values in integration points. The supported values are 0 for simple nodal aver-
ageing (generally supported only by triangular and tetrahedral elements), 1 for Zienkiewicz Zhu recovery
(default), and 2 for Superconvergent Patch Recovery (SPR, based on least square fitting).

• VTK pfem (particle FEM) export. Exports particle positions to vtk as a point dataset.

vtkpfem [vars #(ia)] [primvars #(ia)] [cellvars #(ia)] [ipvars #(ia)] [stype
#(in)]

• VTK memory export. This module is not producing any output, but prepares necessary data structures to suport
vtk export or vtk visualization. It is used by Python interface to access vtk datasets.

vtkmemory [vars #(ia)] [primvars #(ia)] [cellvars #(ia)] [ipvars #(ia)]

• VTK xfem export module. Exports xfem related data. The data exported are determined by XfemManager
vtkExportFields parameter (see exportfields keyword).

vtkxmlxfem

• Homogenization of IP quantities in the global coordinate system (such as stress, strain, damage, heat flow).
Corresponding IP quantities are summed and averaged over the volume. It is possible to select region sets from
which the averaging occurs. The averaging works for all domains with an extension to trusses. A truss is con-
sidered as a volume element with oriented stress and strain components along the truss axis. The transformation
to global components occurs before averaging.

hom ists #(ia) [scale #(rn)] [regionSets #(ia)] [strain_energy]

– An integer array ists specifies internal state types for export which are defined in internalstatetype.h file.

– The parameter scale multiplies all averaged IP quantities. scale=1 by default.

– An integer array regionSets specifies region sets for averaging. All domain is averaged by default.

– strain_energy calculates strain energy over selected elements (defined by sets) by

𝑊 * =

∫︁
𝑉

∫︁
𝜎d(𝜀− 𝜀𝑒𝑖𝑔)d𝑉

where 𝜎 is the stress tensor, 𝜀 stands for the strain tensor and 𝜀𝑒𝑖𝑔 is eigenstrain tensor (originates from
temperature load or prescribed eigenstrain). Strain energy increment and total strain energy is reported in
each step. The integration uses mid-point rule for stress and yields exact results for linear elastic materials.

• Gauss point export is useful if one needs to plot a certain variable (such as damage) as a function of a spatial
coordinate using tools like gnuplot. It generates files with data organized in columns, each row represent-
ing one Gauss point. In this way, one can plot e.g. the damage distribution along a one-dimensional bar.
gpexportmodule [vars #(ia)] [ncoords #(in)]

– The array vars contains identifiers for those internal variables which are to be exported.
The id values are defined by InternalStateType enumeration, which is defined in include file
“src/oofemlib/internalstatetype.h”.

– Parameter ncoords specifies the number of spatial coordinates to be exported at each Gauss point. De-
pending on the spatial dimension of the domain, the points can have one, two or three coordinates. If
ncoords is set to -1, only those coordinates that are actually used are exported. If ncoords is set to
0, no coordinates are exported. If ncoords is set to a positive integer, exactly ncoords coordinates
are exported. If ncoords exceeds the actual number of coordinates, the actual coordinates are supple-
mented by zeros. For instance, if we deal with a 2D problem, the actual number of coordinates is 2. For
ncoords=3, the two actual coordinates followed by 0 will be exported. For ncoords=1, only the first
coordinate will be exported.

5.7. Export modules 43

OOFEM Input Manual, Release 1.0

The Gauss point export module creates a file with extension “gp” after each step for which the output is per-
formed. This file contains a header with lines starting by the symbol #, followed by the actual data section. Each
data line corresponds to one Gauss point and contains the following data:

1. element number,

2. material number,

3. Gauss point number,

4. contributing volume around Gauss point,

5. Gauss point global coordinates (written as a real array of length ncoords),

6. internal variables according to the specification in vars (each written as a real array of the corresponding
length).

Example: GPExportModule 1 tstep_step 100 domain_all ncoords 2 vars 5 4 13 31
64 65

means that the *.gp file will be written after each 100 steps and will contain for each of the Gauss
points in the entire domain its 2 coordinates and also internal variables of type 4, 13, 31, 64 and 65,
which are the strain tensor, damage tensor, maximum equivalent strain level, stress work density and
dissipated work density. Of course, the material model must be able to deliver such variables. The
size of the strain tensor depends on the spatial dimension, and the size of the damage tensor depends
on the spatial dimension and type of model (e.g., for a simple isotropic damage model it will have
just 1 component while for an anisotropic damage model it may have more). The other variables in
this example are scalars, but they will be written as arrays of length 1, so the actual value will always
be preceded by “1” as the length of the array. Since certain internal variables have the meaning of
densities (per unit volume or area, again depending on the spatial dimension), it is useful to have
access to the contributing volume of the Gauss point. The product of this contributing volume and
the density gives an additive contribution to the total value of the corresponding variable. This can
be exploited e.g. to evaluate the total dissipated energy over the entire domain.

44 Chapter 5. Appendix

CHAPTER

SIX

EXAMPLES

6.1 Beam structure

This example for a simple beam structure gives basic overview of the input file (found under tests/sm/beam2d_1.in).
Structure geometry and its constitutive and geometrical properties are shown in Fig. (ex01). The linear static analysis
is required, the influence of shear is neglected.

Fig. 1: Example 1 - beam2d_1.in

beam2d_1.out
Simple Beam Structure - linear analysis
#only momentum influence to the displacements is taken into account
#beamShearCoeff is artificially enlarged.
StaticStructural nsteps 3 nmodules 0
domain 2dBeam
OutputManager tstep_all dofman_all element_all
ndofman 6 nelem 5 ncrosssect 1 nmat 1 nbc 6 nic 0 nltf 3 nset 7
node 1 coords 3 0. 0. 0.
node 2 coords 3 2.4 0. 0.
node 3 coords 3 3.8 0. 0.
node 4 coords 3 5.8 0. 1.5

(continues on next page)

45

OOFEM Input Manual, Release 1.0

(continued from previous page)

node 5 coords 3 7.8 0. 3.0
node 6 coords 3 2.4 0. 3.0
Beam2d 1 nodes 2 1 2
Beam2d 2 nodes 2 2 3 DofsToCondense 1 6
Beam2d 3 nodes 2 3 4 DofsToCondense 1 3
Beam2d 4 nodes 2 4 5
Beam2d 5 nodes 2 6 2 DofsToCondense 1 6
SimpleCS 1 area 1.e8 Iy 0.0039366 beamShearCoeff 1.e18 thick 0.54 material 1 set 1
IsoLE 1 d 1. E 30.e6 n 0.2 tAlpha 1.2e-5
BoundaryCondition 1 loadTimeFunction 1 dofs 1 3 values 1 0.0 set 4
BoundaryCondition 2 loadTimeFunction 1 dofs 1 5 values 1 0.0 set 5
BoundaryCondition 3 loadTimeFunction 2 dofs 3 1 3 5 values 3 0.0 0.0 -0.006e-3 set 6
ConstantEdgeLoad 4 loadTimeFunction 1 Components 3 0.0 10.0 0.0 loadType 3 set 3
NodalLoad 5 loadTimeFunction 1 dofs 3 1 3 5 Components 3 -18.0 24.0 0.0 set 2
StructTemperatureLoad 6 loadTimeFunction 3 Components 2 30.0 -20.0 set 7
PeakFunction 1 t 1.0 f(t) 1.
PeakFunction 2 t 2.0 f(t) 1.
PeakFunction 3 t 3.0 f(t) 1.
Set 1 elementranges {(1 5)}
Set 2 nodes 1 4
Set 3 elementedges 2 1 1
Set 4 nodes 2 1 5
Set 5 nodes 1 3
Set 6 nodes 1 6
Set 7 elements 2 1 2

6.2 Plane stress example

Fig. 2: Example 2

patch100.out
Patch test of PlaneStress2d elements -> pure compression
LinearStatic nsteps 1
domain 2dPlaneStress
OutputManager tstep_all dofman_all element_all
ndofman 8 nelem 5 ncrosssect 1 nmat 1 nbc 3 nic 0 nltf 1 nset 3
node 1 coords 3 0.0 0.0 0.0
node 2 coords 3 0.0 4.0 0.0

(continues on next page)

46 Chapter 6. Examples

OOFEM Input Manual, Release 1.0

(continued from previous page)

node 3 coords 3 2.0 2.0 0.0
node 4 coords 3 3.0 1.0 0.0
node 5 coords 3 8.0 0.8 0.0
node 6 coords 3 7.0 3.0 0.0
node 7 coords 3 9.0 0.0 0.0
node 8 coords 3 9.0 4.0 0.0
PlaneStress2d 1 nodes 4 1 4 3 2 NIP 1
PlaneStress2d 2 nodes 4 1 7 5 4 NIP 1
PlaneStress2d 3 nodes 4 4 5 6 3 NIP 1
PlaneStress2d 4 nodes 4 3 6 8 2 NIP 1
PlaneStress2d 5 nodes 4 5 7 8 6 NIP 1
Set 1 elementranges {(1 5)}
Set 2 nodes 2 1 2
Set 3 nodes 2 7 8
SimpleCS 1 thick 1.0 width 1.0 material 1 set 1
IsoLE 1 d 0. E 15.0 n 0.25 talpha 1.0
BoundaryCondition 1 loadTimeFunction 1 dofs 2 1 2 values 1 0.0 set 2
BoundaryCondition 2 loadTimeFunction 1 dofs 1 2 values 1 0.0 set 3
NodalLoad 3 loadTimeFunction 1 dofs 2 1 2 components 2 2.5 0.0 set 3
ConstantFunction 1 f(t) 1.0

6.3 Examples - parallel mode

6.3.1 Node-cut example

The example shows explicit direct integration analysis of simple structure with two DOFs. The geometry and parti-
tioning is sketched in fig.(nodecut-ex01).

Fig. 3: Node-cut partitioning example: (a) whole geometry, (b) partition 0, (c) partition 1.

#
partition 0

(continues on next page)

6.3. Examples - parallel mode 47

OOFEM Input Manual, Release 1.0

(continued from previous page)

#
partest.out.0
Parallel test of explicit oofem computation
#
NlDEIDynamic nsteps 3 dumpcoef 0.0 deltaT 1.0
domain 2dTruss
#
OutputManager tstep_all dofman_all element_all
ndofman 2 nelem 1 ncrosssect 1 nmat 1 nbc 3 nic 0 nltf 1 nset 4
#
Node 1 coords 3 0. 0. 0.
Node 2 coords 3 0. 0. 2. Shared partitions 1 1
Truss2d 1 nodes 2 1 2
Set 1 elements 1 1
Set 2 nodes 2 1 2
Set 3 nodes 1 1
Set 4 nodes 0
SimpleCS 1 thick 0.1 width 10.0 material 1 set 1
IsoLE 1 tAlpha 0.000012 d 10.0 E 1.0 n 0.2
BoundaryCondition 1 loadTimeFunction 1 dofs 1 1 values 1 0.0 set 2
BoundaryCondition 2 loadTimeFunction 1 dofs 1 3 values 1 0.0 set 3
NodalLoad 3 loadTimeFunction 1 dofs 2 1 3 components 2 0. 1.0 set 4
ConstantFunction 1 f(t) 1.0

#
partition 1
#
partest.out.1
Parallel test of explicit oofem computation
#
NlDEIDynamic nsteps 3 dumpcoef 0.0 deltaT 1.0
domain 2dTruss
#
OutputManager tstep_all dofman_all element_all
ndofman 2 nelem 1 ncrosssect 1 nmat 1 nbc 3 nic 0 nltf 1 nset 4
#
Node 2 coords 3 0. 0. 2. Shared partitions 1 0
Node 3 coords 3 0. 0. 4.
Truss2d 2 nodes 2 2 3
Set 1 elements 1 2
Set 2 nodes 2 2 3
Set 3 nodes 0
Set 4 nodes 1 3
SimpleCS 1 thick 0.1 width 10.0 material 1 set 1
IsoLE 1 tAlpha 0.000012 d 10.0 E 1.0 n 0.2
BoundaryCondition 1 loadTimeFunction 1 dofs 1 1 values 1 0.0 set 2
BoundaryCondition 2 loadTimeFunction 1 dofs 1 3 values 1 0.0 set 3
NodalLoad 3 loadTimeFunction 1 dofs 2 1 3 components 2 0. 1.0 set 4
ConstantFunction 1 f(t) 1.0

6.3.2 Element-cut example

The example shows explicit direct integration analysis of simple structure with two DOFs. The geometry and parti-
tioning is sketched in fig. (nodecut-ex01).

48 Chapter 6. Examples

OOFEM Input Manual, Release 1.0

Fig. 4: Element-cut partitioning example: (a) whole geometry, (b) partition 0, (c) partition 1.

#
partition 0
#
partest2.out.0
Parallel test of explicit oofem computation
#
NlDEIDynamic nsteps 5 dumpcoef 0.0 deltaT 1.0
domain 2dTruss
#
OutputManager tstep_all dofman_all element_all
ndofman 3 nelem 2 ncrosssect 1 nmat 1 nbc 3 nic 0 nltf 1 nset 4
#
Node 1 coords 3 0. 0. 0.
Node 2 coords 3 0. 0. 2.
Node 3 coords 3 0. 0. 4. Remote partitions 1 1
Truss2d 1 nodes 2 1 2
Truss2d 2 nodes 2 2 3
Set 1 elements 2 1 2
Set 2 nodes 3 1 2 3
Set 3 nodes 1 1
Set 4 nodes 1 3
SimpleCS 1 thick 0.1 width 10.0 material 1 set 1
IsoLE 1 tAlpha 0.000012 d 10.0 E 1.0 n 0.2
BoundaryCondition 1 loadTimeFunction 1 dofs 1 1 values 1 0.0 set 2
BoundaryCondition 2 loadTimeFunction 1 dofs 1 3 values 1 0.0 set 3
NodalLoad 3 loadTimeFunction 1 dofs 2 1 3 components 2 0. 1.0 set 4
ConstantFunction 1 f(t) 1.0

(continues on next page)

6.3. Examples - parallel mode 49

OOFEM Input Manual, Release 1.0

(continued from previous page)

#
partition 1
#
partest2.out.1
Parallel test of explicit oofem computation
#
NlDEIDynamic nsteps 5 dumpcoef 0.0 deltaT 1.0
domain 2dTruss
#
OutputManager tstep_all dofman_all element_all
ndofman 2 nelem 1 ncrosssect 1 nmat 1 nbc 3 nic 0 nltf 1 nset 4
#
Node 2 coords 3 0. 0. 2 Remote partitions 1 0
Node 3 coords 3 0. 0. 4
Truss2d 2 nodes 2 2 3
Set 1 elements 1 2
Set 2 nodes 2 2 3
Set 3 nodes 0
Set 4 nodes 1 3
SimpleCS 1 thick 0.1 width 10.0 material 1 set 1
IsoLE 1 tAlpha 0.000012 d 10.0 E 1.0 n 0.2
BoundaryCondition 1 loadTimeFunction 1 dofs 1 1 values 1 0.0 set 2
BoundaryCondition 2 loadTimeFunction 1 dofs 1 3 values 1 0.0 set 3
NodalLoad 3 loadTimeFunction 1 dofs 2 1 3 components 2 0. 1.0 set 4
ConstantFunction 1 f(t) 1.0

6.4 Figures

Fig. 5: Node-cut partitioning.

50 Chapter 6. Examples

OOFEM Input Manual, Release 1.0

Fig. 6: Node-cut partitioning - local constitutive mode.

Fig. 7: Node-cut partitioning - nonlocal constitutive mode.

6.4. Figures 51

OOFEM Input Manual, Release 1.0

Fig. 8: Element-cut partitioning.

Fig. 9: Element-cut partitioning, local constitutive mode.

52 Chapter 6. Examples

CHAPTER

SEVEN

ABOUT

This manual is part of OOFEM documentation project. OOFEM is open source finite element solver
which has been originally developped at Department of Mechanics of Faculty of Civil Engineering, Czech
Technical University in Prague, Czech Republic.

For more information about oofem, please wisit www.oofem.org

53

	Introduction
	Running the code
	Syntax and general rules

	Output and Job description Records
	Output file record
	Job description record

	Analysis record
	Structural Problems
	Transport Problems
	Fluid Dynamic Problems
	Coupled Problems

	Domain record(s)
	Output manager record
	Components size record
	Dof manager records
	Element records
	Set records
	Cross section records
	Material type records
	Nonlocal barrier records
	Load and boundary conditions
	Initial conditions
	Time functions records
	Xfem manager record and associated records

	Appendix
	Sparse linear solver parameters
	Eigen value solvers
	Error estimators and indicators
	Material interfaces
	Mesh generator interfaces
	Initialization modules
	Export modules

	Examples
	Beam structure
	Plane stress example
	Examples - parallel mode
	Figures

	About

