61 this->
grad(B, this->
field, this->
field->interpolation, cell, lcoords, mmode);
73 double t =
Nt.dotProduct(rt);
84 double t =
Nt.dotProduct(p);
107 alphaPi(0,0) = -D(0,0);
108 alphaPi(1,0) = -D(1,1);
109 alphaPi(2,0) = -D(2,2);
182 double t =
Nt.dotProduct(rt);
184 if ( this->
bl->giveFormulationType() == Load :: FT_Entity ) {
190 this->
bl->computeValues(Te, tstep, coords, this->
field->dofIDs, VM_TotalIntrinsic);
191 answer *= this->
bl->giveProperty(
'a', tstep)*(t-Te.
at(1));
BDalphaPiTerm(const Variable *testField, const Variable *unknownField, ValueModeType m)
void initializeCell(Element &cell) const override
void getDimensions(Element &cell) const override
void evaluate(FloatArray &, MPElement &cell, GaussPoint *gp, TimeStep *tstep) const override
Empty, this should be evaluated by BTSigTerm term$.
void evaluate_lin(FloatMatrix &answer, MPElement &e, GaussPoint *gp, TimeStep *tstep) const override
Evaluates the linearization of $B^T\sigma(u)$, i.e. $B^TDBu$.
BTSigTerm(const Variable *testField, const Variable *unknownField)
void grad(FloatMatrix &answer, const Variable *v, const FEInterpolation *interpol, const Element &cell, const FloatArray &coords, const MaterialMode mmode) const
Evaluates B matrix; i.e. $LN$ where $L$ is operator matrix and $N$ is interpolation matrix of unknown...
void evaluate(FloatArray &, MPElement &cell, GaussPoint *gp, TimeStep *tstep) const override
Evaluates Internal forces vector, i.e. $b^T\sigma(u)$.
BTdSigmadT(const Variable *testField, const Variable *unknownField)
void getDimensions(Element &cell) const override
void evaluate_lin(FloatMatrix &answer, MPElement &e, GaussPoint *gp, TimeStep *tstep) const override
Evaluates the linearization of $B^T\sigma(u)$, i.e. $B^TDBu$.
void initializeCell(Element &cell) const override
virtual Material * giveMaterial(IntegrationPoint *ip) const =0
hidden by virtual oofem::Material* TransportCrossSection::giveMaterial() const
virtual const FEInterpolation * getGeometryInterpolation() const
CrossSection * giveCrossSection()
virtual Element_Geometry_Type giveGeometryType() const =0
virtual void boundarySurfaceLocal2global(FloatArray &answer, int isurf, const FloatArray &lcoords, const FEICellGeometry &cellgeo) const =0
void zero()
Zeroes all coefficients of receiver.
static FloatArray fromConcatenated(std::initializer_list< FloatArray > ini)
void beProductOf(const FloatMatrix &aMatrix, const FloatArray &anArray)
void beTProductOf(const FloatMatrix &aMatrix, const FloatArray &anArray)
static FloatMatrix fromArray(const FloatArray &vector, bool transpose=false)
void resize(Index rows, Index cols)
void beProductOf(const FloatMatrix &a, const FloatMatrix &b)
void plusDyadUnsym(const FloatArray &a, const FloatArray &b, double dV)
void zero()
Zeroes all coefficient of receiver.
void beTProductOf(const FloatMatrix &a, const FloatMatrix &b)
const FloatArray & giveNaturalCoordinates() const
Returns coordinate array of receiver.
MaterialMode giveMaterialMode()
Returns corresponding material mode of receiver.
InternalTMFluxSourceTerm(const Variable *testField, const Variable *unknownField, const Variable *temperatureField)
void evaluate(FloatArray &, MPElement &cell, GaussPoint *gp, TimeStep *tstep) const override
Evaluates Internal forces vector, i.e. $b^T\sigma(u)$.
Base class for elements based on mp (multi-physics) concept.
virtual void getBoundaryUnknownVector(FloatArray &answer, const Variable *field, ValueModeType mode, int ibc, char bt, TimeStep *tStep)
virtual const void getUnknownVector(FloatArray &answer, const Variable *field, ValueModeType mode, TimeStep *tstep)
Returns vector of nodal unknowns for given Variable.
virtual void giveCharacteristicVector(FloatArray &answer, FloatArray &flux, MatResponseMode type, GaussPoint *gp, TimeStep *tStep) const
Returns characteristic vector of the receiver.
virtual void giveCharacteristicMatrix(FloatMatrix &answer, MatResponseMode type, GaussPoint *gp, TimeStep *tStep) const
Returns characteristic matrix of the receiver.
NTaTmTe(const Variable *testField, const Variable *unknownField, BoundaryLoad *bl, int boundaryID, char boundaryType)
void getDimensions(Element &cell) const override
void evaluate_lin(FloatMatrix &answer, MPElement &e, GaussPoint *gp, TimeStep *tstep) const override
Evaluates the linearization of $B^T\sigma(u)$, i.e. $B^TDBu$.
void evaluate(FloatArray &, MPElement &cell, GaussPoint *gp, TimeStep *tstep) const override
Evaluates Internal forces vector, i.e. $b^T\sigma(u)$.
void initializeCell(Element &cell) const override
void evaluate(FloatArray &, MPElement &cell, GaussPoint *gp, TimeStep *tstep) const override
Evaluates Internal forces vector, i.e. $b^T\sigma(u)$.
void computeTMgeneralizedStrain(FloatArray &answer, FloatMatrix &B, MPElement &cell, const FloatArray &lcoords, MaterialMode mmode, TimeStep *tstep) const
const Variable * temperatureField
TMBTSigTerm(const Variable *testField, const Variable *unknownField, const Variable *temperatureField)
void evaluate(FloatArray &, MPElement &cell, GaussPoint *gp, TimeStep *tstep) const override
Evaluates Internal forces vector, i.e. $w^T(\grad N)^T f(p)$.
TMgNTfTerm(const Variable *testField, const Variable *unknownField, MatResponseMode lhsType, MatResponseMode rhsType)
const Variable * testField
gNTfTerm(const Variable *testField, const Variable *unknownField, MatResponseMode lhsType, MatResponseMode rhsType)
void grad(FloatMatrix &answer, const Variable *v, const FEInterpolation *interpol, const Element &cell, const FloatArray &coords) const
Evaluates B matrix; i.e. $\grad N$ where $N$ is interpolation matrix of unknown (p).
void evalB(FloatMatrix &answer, const Variable *v, const FEInterpolation *interpol, const Element &cell, const FloatArray &coords, const MaterialMode mmode)
Evaluates $B$ = matrix;.
static FloatArray Vec1(const double &a)