OOFEM 3.0
Loading...
Searching...
No Matches
oofem::Natural2LocalOrdering Class Reference

#include <parallelordering.h>

Inheritance diagram for oofem::Natural2LocalOrdering:
Collaboration diagram for oofem::Natural2LocalOrdering:

Public Member Functions

 Natural2LocalOrdering ()
virtual ~Natural2LocalOrdering ()
void init (EngngModel *, int di, const UnknownNumberingScheme &n) override
int giveNewEq (int leq) override
int giveOldEq (int eq) override
void map2New (IntArray &answer, const IntArray &src, int baseOffset=0) override
void map2Old (IntArray &answer, const IntArray &src, int baseOffset=0) override
IntArraygiveN2Lmap ()
Public Member Functions inherited from oofem::ParallelOrdering
 ParallelOrdering ()
virtual ~ParallelOrdering ()
bool isLocal (DofManager *dman)
 Returns true if given DofManager is local (ie maintained by the receiver processor).
bool isShared (DofManager *dman)
 Returns true if given DofManager is shared between partitions.
virtual int giveNumberOfLocalEqs ()
virtual int giveNumberOfGlobalEqs ()

Protected Attributes

IntArray n2l
 Natural to local.

Detailed Description

Ordering from oofem natural ordering (includes all local and shared eqs) to local ordering, where only locally maintained eqs are considered.

Definition at line 133 of file parallelordering.h.

Constructor & Destructor Documentation

◆ Natural2LocalOrdering()

oofem::Natural2LocalOrdering::Natural2LocalOrdering ( )

Definition at line 508 of file parallelordering.C.

References n2l, and oofem::ParallelOrdering::ParallelOrdering().

◆ ~Natural2LocalOrdering()

virtual oofem::Natural2LocalOrdering::~Natural2LocalOrdering ( )
inlinevirtual

Definition at line 141 of file parallelordering.h.

Member Function Documentation

◆ giveN2Lmap()

IntArray * oofem::Natural2LocalOrdering::giveN2Lmap ( )
inline

Definition at line 151 of file parallelordering.h.

References n2l.

Referenced by oofem::PetscSparseMtrx::buildInternalStructure().

◆ giveNewEq()

int oofem::Natural2LocalOrdering::giveNewEq ( int leq)
overridevirtual

Finds the global equation from a local equation.

Parameters
leqLocal equation number.
Returns
Global equation number.

Implements oofem::ParallelOrdering.

Definition at line 543 of file parallelordering.C.

References n2l.

Referenced by oofem::PetscSparseMtrx::scatterL2G().

◆ giveOldEq()

int oofem::Natural2LocalOrdering::giveOldEq ( int eq)
overridevirtual

Finds the local equation number from a global equation.

Parameters
eqGlobal equation number.
Returns
Local equation number.

Implements oofem::ParallelOrdering.

Definition at line 549 of file parallelordering.C.

References n2l.

Referenced by map2Old().

◆ init()

void oofem::Natural2LocalOrdering::init ( EngngModel * em,
int di,
const UnknownNumberingScheme & u )
overridevirtual

Initiates the receiver.

Parameters
emEngineering model to determine general information about the problem.
diDomain index.

Implements oofem::ParallelOrdering.

Definition at line 511 of file parallelordering.C.

References oofem::Domain::giveDofManager(), oofem::EngngModel::giveDomain(), oofem::Domain::giveNumberOfDofManagers(), oofem::EngngModel::giveNumberOfDomainEquations(), oofem::ParallelOrdering::isLocal(), and n2l.

Referenced by oofem::PetscSparseMtrx::buildInternalStructure().

◆ map2New()

void oofem::Natural2LocalOrdering::map2New ( IntArray & answer,
const IntArray & src,
int baseOffset = 0 )
overridevirtual

◆ map2Old()

void oofem::Natural2LocalOrdering::map2Old ( IntArray & answer,
const IntArray & src,
int baseOffset = 0 )
overridevirtual

Member Data Documentation

◆ n2l

IntArray oofem::Natural2LocalOrdering::n2l
protected

Natural to local.

Definition at line 137 of file parallelordering.h.

Referenced by giveN2Lmap(), giveNewEq(), giveOldEq(), init(), map2New(), and Natural2LocalOrdering().


The documentation for this class was generated from the following files:

This page is part of the OOFEM-3.0 documentation. Copyright Copyright (C) 1994-2025 Borek Patzak Bořek Patzák
Project e-mail: oofem@fsv.cvut.cz
Generated at for OOFEM by doxygen 1.15.0 written by Dimitri van Heesch, © 1997-2011